-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmc.py
43 lines (41 loc) · 1.15 KB
/
mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Solve planning only model and estimate p^f_j using Markov-chain or Frequency
approach.
config: .yaml config file
"""
import sys
import dill
import yaml
from stn import blockPlanning # noqa
import stn.deg as deg # noqa
# Load config file
with open(sys.argv[1], "r") as f:
y = yaml.load(f)
# Load STN structure
with open(y["stn"], "rb") as dill_file:
stn = dill.load(dill_file)
Ts = y["Ts"]
dTs = y["dTs"]
Tp = y["Tp"]
dTp = y["dTp"]
TIMEp = range(0, Tp, dTp)
# Solve model for each alpha
for n, q in enumerate(y["alphas"]):
# Create instance
model = blockPlanning(stn, [0, Tp, dTp])
for i in range(0, len(TIMEp)):
for p in stn.products:
model.demand(p, TIMEp[i], y[p][i])
model.build(objective="terminal", decisionrule="continuous", alpha=q,
rdir=y["rdir"], prefix=y["prfx"])
# Solve instance
model.solve(
solver="cplex",
tindexed=False,
trace=True,
save=True,
solverparams=y["solverparams"])
# Evaluate
df = model.eval(TP=y["TP"], periods=y["periods"], dTs=y["dTs"])