-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathscanaerial_functions.py
87 lines (76 loc) · 2.98 KB
/
scanaerial_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
from __future__ import division
from future import standard_library
standard_library.install_aliases()
from builtins import range
if __name__ == "__main__":
exit(0)
try:
from urllib.request import urlopen
except ImportError:
from urllib.request import urlopen
import xml.etree.ElementTree as ElementTree
from sys import setrecursionlimit
setrecursionlimit(1500000)
def distance(a, b):
"""
Euclidean metric
"""
return ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2 + (a[2] - b[2]) ** 2) ** 0.5
def point_line_distance(point, startline, endline):
"""
check if the "line" is actually a point
if not use
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
Copypasted from lakewalker
"""
if (startline == endline):
return ((startline[0] - point[0]) ** 2 + \
(startline[1] - point[1]) ** 2) ** 0.5
else:
return abs((endline[0] - startline[0]) * (startline[1] - point[1]) - \
(startline[0] - point[0]) * (endline[1] - startline[1])) * 1.0 / \
((endline[0] - startline[0]) ** 2 + (endline[1] - startline[1]) ** 2) ** 0.5
def douglas_peucker(nodes, epsilon):
"""
makes a linear curve smoother see also
http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
Copypasted from lakewalker
"""
farthest_node = None
farthest_dist = 0
first = nodes[0]
last = nodes[-1]
for i in range(1, len(nodes) - 1):
d = point_line_distance(nodes[i], first, last)
if d > farthest_dist:
farthest_dist = d
farthest_node = i
if farthest_dist > epsilon:
seg_a = douglas_peucker(nodes[0:farthest_node + 1], epsilon)
seg_b = douglas_peucker(nodes[farthest_node:], epsilon)
nodes = seg_a[:-1] + seg_b
else:
return [nodes[0], nodes[-1]]
return nodes
def bing_img_url(resturl):
xml = urlopen(resturl).read()
root = ElementTree.fromstring(xml)
namespace = "{http://schemas.microsoft.com/search/local/ws/rest/v1}"
imgurl = root.findall('.//{0}ImageryMetadata/{0}ImageUrl'.format(namespace))[0].text
subdomain = root.findall('.//{0}ImageryMetadata/{0}ImageUrlSubdomains/{0}string'.format(namespace))[0].text
imgurl = imgurl.replace("{subdomain}",subdomain)
return imgurl