-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathremote_faster_whisper.py
executable file
·223 lines (189 loc) · 7.04 KB
/
remote_faster_whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
# Remote Faster Whisper
# An API interface for Faster Whisper to parse audio over HTTP
#
# Copyright (C) 2023 Joshua M. Boniface <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
from configargparse import ArgParser
from flask import Flask, Blueprint, request
from speech_recognition.audio import AudioData
from faster_whisper import WhisperModel
from io import BytesIO
from os.path import exists
from os import makedirs
from time import time
from yaml import safe_load
from speech_recognition import Recognizer, AudioFile
from numpy import float32
from soundfile import read as sf_read
from re import sub, search
class FasterWhisperApi:
def __init__(
self,
listen="127.0.0.1",
port=9876,
base_url="/api/v0",
faster_whisper_config={},
transformations={},
):
"""
Initialize the API and Faster Whisper configuration
"""
self.app = Flask(__name__)
self.blueprint = Blueprint("api", __name__, url_prefix=base_url)
self.listen = listen
self.port = port
self.transformations = transformations
self.model_cache_dir = faster_whisper_config.get(
"model_cache_dir", "/tmp/whisper-cache"
)
self.model = faster_whisper_config.get("model", "base")
self.device = faster_whisper_config.get("device", "auto")
self.device_index = faster_whisper_config.get("device_index", 0)
self.compute_type = faster_whisper_config.get("compute_type", "int8")
self.beam_size = faster_whisper_config.get("beam_size", 5)
self.translate = faster_whisper_config.get("translate", False)
self.language = faster_whisper_config.get("language", None)
if not self.language:
self.language = None
self.save_audio = faster_whisper_config.get("debug", {}).get("save_audio")
if self.save_audio:
self.save_path = faster_whisper_config.get("debug", {}).get("save_path")
if self.save_audio:
if not exists(self.save_path):
makedirs(self.save_path)
@self.blueprint.route("/transcribe", methods=["POST"])
def transcribe():
try:
f = request.files["audio_file"]
except Exception:
return {
"message": "Request data did not contain an 'audio_file' in its files"
}, 400
try:
rec = Recognizer()
with AudioFile(f) as source:
audio = rec.record(source)
assert isinstance(audio, AudioData)
data = audio.get_wav_data(convert_rate=16000)
if self.save_audio:
runtime = time()
makedirs(f"{self.save_path}/{runtime}")
with open(f"{self.save_path}/{runtime}/audio.wav", "wb") as fh:
fh.write(data)
except Exception:
return {
"message": "The 'audio_file' must contain valid WAV audio data"
}, 400
return self.perform_faster_whisper_recognition(audio)
self.app.register_blueprint(self.blueprint)
def start(self):
"""
Initialize the WhisperModel (including downloading the model files) and start the API
"""
print("Initializing WhisperModel instance")
self.whisper_model = WhisperModel(
self.model,
device=self.device,
device_index=self.device_index,
compute_type=self.compute_type,
download_root=self.model_cache_dir,
)
print("Starting API")
self.app.run(debug=False, host=self.listen, port=self.port)
def perform_faster_whisper_recognition(self, audio_data):
"""
Perform recognition on {audio_data} with model
"""
print("Performing recognition on audio data")
t_start = time()
wav_bytes = audio_data.get_wav_data(convert_rate=16000)
wav_stream = BytesIO(wav_bytes)
audio_array, sampling_rate = sf_read(wav_stream)
audio_array = audio_array.astype(float32)
segments, info = self.whisper_model.transcribe(
audio_array,
beam_size=self.beam_size,
language=self.language,
task="translate" if self.translate else "transcribe",
)
found_text = list()
for segment in segments:
found_text.append(segment.text)
text = " ".join(found_text).strip()
# Perform transformations on text
if 'lower' in self.transformations:
text = text.lower()
if 'casefold' in self.transformations:
text = text.casefold()
if 'upper' in self.transformations:
text = text.upper()
if 'title' in self.transformations:
text = text.title()
for tr in self.transformations:
if not isinstance(tr, list):
continue
if search(tr[0], text):
_text = text
text = sub(tr[0], tr[1], text)
print(f'Transforming "{tr[0]}" -> "{tr[1]}": pre "{_text}", post "{text}"')
t_end = time()
t_run = t_end - t_start
result = {
"text": text,
"language": info.language,
"language_probability": info.language_probability,
"sample_duration": info.duration,
"runtime": t_run,
}
print(f"Result: {result}")
return result
def parse_args():
"""
Parse CLI arguments/environment variables (configuration file path)
"""
p = ArgParser()
p.add(
"-c",
"--config",
env_var="RFW_CONFIG_FILE",
help="Configuration file path",
required=True,
)
options = p.parse_args()
return options
def parse_config(configfile):
"""
Parse YAML configuration into {config} dictionary
"""
with open(configfile, "r") as fh:
config = safe_load(fh)
return config
def start_api():
"""
Parse arguments, grab configuration, and initialize and start the API
"""
options = parse_args()
config = parse_config(options.config)
api = FasterWhisperApi(
**config["daemon"],
faster_whisper_config=config["faster_whisper"],
transformations=config.get("transformations", {}),
)
api.start()
# Main entrypoint
if __name__ == "__main__":
start_api()