-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhdg_stokes.py
235 lines (207 loc) · 8.92 KB
/
hdg_stokes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from dolfinx import mesh, fem, io
import ufl
from ufl import inner, grad, dot, div, outer
import numpy as np
from petsc4py import PETSc
from dolfinx.cpp.mesh import cell_num_entities
from dolfinx.cpp.fem import compute_integration_domains
from utils import (norm_L2, domain_average, normal_jump_error,
par_print)
from enum import Enum
class Scheme(Enum):
# Scheme from https://doi.org/10.1016/j.cma.2019.112619
RW = 1
# Scheme from "Design and analysis of an exactly divergence-free
# hybridized discontinuous Galerkin method for incompressible
# flows on meshes with quadrilateral cells" by
# J. P. Dean, S. Rhebergen, and G. N. Wells
DRW = 2
def solve(k, nu, scheme, msh, mt, boundary_ids,
boundary_conditions, f, u_e, p_e):
# Create a sub-mesh of the facets of msh to allow facet function
# spaces to be created
tdim = msh.topology.dim
fdim = tdim - 1
msh.topology.create_entities(fdim)
facet_imap = msh.topology.index_map(fdim)
num_facets = facet_imap.size_local + facet_imap.num_ghosts
facets = np.arange(num_facets, dtype=np.int32)
facet_mesh, facet_mesh_to_msh = mesh.create_submesh(
msh, fdim, facets)[0:2]
# Create the function spaces for the problem
if scheme == Scheme.RW:
V = fem.VectorFunctionSpace(msh, ("Discontinuous Lagrange", k))
Q = fem.FunctionSpace(msh, ("Discontinuous Lagrange", k - 1))
else:
V = fem.FunctionSpace(msh, ("Discontinuous Raviart-Thomas", k + 1))
Q = fem.FunctionSpace(msh, ("Discontinuous Lagrange", k))
Vbar = fem.VectorFunctionSpace(
facet_mesh, ("Discontinuous Lagrange", k))
Qbar = fem.FunctionSpace(facet_mesh, ("Discontinuous Lagrange", k))
# Create functions
u_h = fem.Function(V) # Cell velocity
ubar_h = fem.Function(Vbar) # Facet velocity
ubar_h.name = "ubar"
p_h = fem.Function(Q) # Cell pressure
p_h.name = "p"
pbar_h = fem.Function(Qbar) # Facet pressure
pbar_h.name = "pbar"
# Create integration measures
all_facets_tag = 0
all_facets = []
num_cell_facets = cell_num_entities(msh.topology.cell_type, fdim)
for cell in range(msh.topology.index_map(tdim).size_local):
for local_facet in range(num_cell_facets):
all_facets.extend([cell, local_facet])
facet_integration_entities = [(all_facets_tag, all_facets)]
facet_integration_entities += compute_integration_domains(
fem.IntegralType.exterior_facet, mt._cpp_object)
dx_c = ufl.Measure("dx", domain=msh)
ds_c = ufl.Measure(
"ds", subdomain_data=facet_integration_entities, domain=msh)
dx_f = ufl.Measure("dx", domain=facet_mesh)
# We write the mixed domain forms as integrals over msh. Hence, we must
# provide a map from facets in msh to cells in facet_mesh. This is the
# 'inverse' of facet_mesh_to_msh, which we compute as follows:
msh_to_facet_mesh = np.full(num_facets, -1)
msh_to_facet_mesh[facet_mesh_to_msh] = np.arange(
len(facet_mesh_to_msh))
entity_maps = {facet_mesh: msh_to_facet_mesh}
# Trial and test functions
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
p, q = ufl.TrialFunction(Q), ufl.TestFunction(Q)
ubar, vbar = ufl.TrialFunction(Vbar), ufl.TestFunction(Vbar)
pbar, qbar = ufl.TrialFunction(Qbar), ufl.TestFunction(Qbar)
# Define finite element forms
h = ufl.CellDiameter(msh)
n = ufl.FacetNormal(msh)
gamma = 16.0 * k**2 / h # Scaled penalty parameter
nu = fem.Constant(msh, PETSc.ScalarType(nu))
a_00 = nu * inner(grad(u), grad(v)) * dx_c \
- nu * inner(grad(u), outer(v, n)) * ds_c(all_facets_tag) \
+ nu * gamma * inner(outer(u, n), outer(v, n)) * ds_c(all_facets_tag) \
- nu * inner(outer(u, n), grad(v)) * ds_c(all_facets_tag)
a_01 = fem.form(- inner(p * ufl.Identity(msh.topology.dim),
grad(v)) * dx_c)
a_02 = - nu * gamma * inner(
outer(ubar, n), outer(v, n)) * ds_c(all_facets_tag) \
+ nu * inner(outer(ubar, n), grad(v)) * ds_c(all_facets_tag)
a_03 = fem.form(inner(pbar * ufl.Identity(msh.topology.dim),
outer(v, n)) * ds_c(all_facets_tag),
entity_maps=entity_maps)
a_10 = fem.form(inner(u, grad(q)) * dx_c -
inner(dot(u, n), q) * ds_c(all_facets_tag))
a_20 = - nu * inner(grad(u), outer(vbar, n)) * ds_c(all_facets_tag) \
+ nu * gamma * inner(outer(u, n), outer(vbar, n)
) * ds_c(all_facets_tag)
a_30 = fem.form(inner(dot(u, n), qbar) *
ds_c(all_facets_tag), entity_maps=entity_maps)
a_23 = fem.form(
inner(pbar * ufl.Identity(tdim), outer(vbar, n)) *
ds_c(all_facets_tag),
entity_maps=entity_maps)
a_32 = fem.form(- inner(dot(ubar, n), qbar) * ds_c,
entity_maps=entity_maps)
a_22 = - nu * gamma * \
inner(outer(ubar, n), outer(vbar, n)) * ds_c(all_facets_tag)
L_2 = inner(fem.Constant(msh, [PETSc.ScalarType(0.0)
for i in range(tdim)]),
vbar) * ds_c(all_facets_tag)
# Apply boundary conditions
bcs = []
for name, bc in boundary_conditions.items():
bound_id = boundary_ids[name]
bc_expr = bc
bc_func = fem.Function(Vbar)
bc_func.interpolate(bc_expr)
facets = msh_to_facet_mesh[mt.indices[mt.values == bound_id]]
dofs = fem.locate_dofs_topological(Vbar, fdim, facets)
bcs.append(fem.dirichletbc(bc_func, dofs))
# Compile forms
a_00 = fem.form(a_00)
a_02 = fem.form(a_02, entity_maps=entity_maps)
a_20 = fem.form(a_20, entity_maps=entity_maps)
a_22 = fem.form(a_22, entity_maps=entity_maps)
L_0 = fem.form(inner(f, v) * dx_c)
L_1 = fem.form(inner(fem.Constant(msh, 0.0), q) * dx_c)
L_2 = fem.form(L_2, entity_maps=entity_maps)
L_3 = fem.form(inner(fem.Constant(
facet_mesh, PETSc.ScalarType(0.0)), qbar) * dx_f)
# Define block structure
a = [[a_00, a_01, a_02, a_03],
[a_10, None, None, None],
[a_20, None, a_22, a_23],
[a_30, None, a_32, None]]
L = [L_0, L_1, L_2, L_3]
# Assemble matrix
A = fem.petsc.assemble_matrix_block(a, bcs=bcs)
A.assemble()
# Assemble vector
b = fem.petsc.assemble_vector_block(L, a, bcs=bcs)
# Setup solver
ksp = PETSc.KSP().create(msh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
opts = PETSc.Options()
# Settings to handle the nullspace of constants
opts["mat_mumps_icntl_6"] = 2
opts["mat_mumps_icntl_14"] = 100
ksp.setFromOptions()
# Compute solution
x = A.createVecRight()
ksp.solve(b, x)
# Recover solution
u_offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
p_offset = u_offset + \
Q.dofmap.index_map.size_local * Q.dofmap.index_map_bs
ubar_offset = \
p_offset + Vbar.dofmap.index_map.size_local * \
Vbar.dofmap.index_map_bs
u_h.x.array[:u_offset] = x.array_r[:u_offset]
u_h.x.scatter_forward()
p_h.x.array[:p_offset - u_offset] = x.array_r[u_offset:p_offset]
p_h.x.scatter_forward()
ubar_h.x.array[:ubar_offset - p_offset] = \
x.array_r[p_offset:ubar_offset]
ubar_h.x.scatter_forward()
pbar_h.x.array[:(len(x.array_r) - ubar_offset)] = \
x.array_r[ubar_offset:]
pbar_h.x.scatter_forward()
# The scheme DRW uses a broken Raviart-Thomas space for the
# velocity field. We interpolate this into a broken Lagrange
# space of degree k + 1 (which can represent it exactly) for
# artifact free visualisation
V_vis = fem.VectorFunctionSpace(msh, ("Discontinuous Lagrange", k + 1))
u_vis = fem.Function(V_vis)
u_vis.name = "u"
u_vis.interpolate(u_h)
# Write solution to file
vis_files = [("u.bp", u_vis), ("p.bp", p_h),
("ubar.bp", ubar_h), ("pbar.bp", pbar_h)]
for file_name, func in vis_files:
with io.VTXWriter(msh.comm, file_name, func) as f:
f.write(0.0)
# Compute error in solution
x = ufl.SpatialCoordinate(msh)
xbar = ufl.SpatialCoordinate(facet_mesh)
e_u = norm_L2(msh.comm, u_h - u_e(x))
e_ubar = norm_L2(msh.comm, ubar_h - u_e(xbar))
p_h_avg = domain_average(msh, p_h)
p_e_avg = domain_average(msh, p_e(x))
e_p = norm_L2(msh.comm, (p_h - p_h_avg) - (p_e(x) - p_e_avg))
pbar_h_avg = domain_average(facet_mesh, pbar_h)
pbar_e_avg = domain_average(facet_mesh, p_e(xbar))
e_pbar = norm_L2(msh.comm, (pbar_h - pbar_h_avg) -
(p_e(xbar) - pbar_e_avg))
e_div_u = norm_L2(msh.comm, div(u_h))
e_jump_u = normal_jump_error(msh, u_h)
# Print errors
comm = msh.comm
par_print(comm, f"e_u = {e_u}")
par_print(comm, f"e_ubar = {e_ubar}")
par_print(comm, f"e_p = {e_p}")
par_print(comm, f"e_pbar = {e_pbar}")
par_print(comm, f"e_div_u = {e_div_u}")
par_print(comm, f"e_jump_u = {e_jump_u}")