-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathConsensus.py
executable file
·212 lines (177 loc) · 6.78 KB
/
Consensus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Calculate dumb and brute force consensus sequences from MSAs.
Currently requires that the MSA has no entire gap columns.
"""
# This program is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
import os
import sys
import traceback
import warnings
from Bio import AlignIO
from Bio import SeqIO
from Bio.Align import AlignInfo
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
__author__ = "Joe R. J. Healey"
__version__ = "1.0.0"
__title__ = "Consensus.py"
__license__ = "GPLv3"
__author_email__ = "[email protected]"
def parse_args():
"""Parse commandline arguments"""
import argparse
from argparse import RawTextHelpFormatter
from textwrap import dedent
try:
parser = argparse.ArgumentParser(
description='Calculate dumb and brute force consensus sequences from Multiple Sequence Alignments.',
usage='python Consensus.py [options] task alignment\nRun with all defaults: python Consensus.py alignment\n\npython Consensus.py -h|--help for full options',
formatter_class=RawTextHelpFormatter)
parser.add_argument('task',
action='store',
default='forced',
choices=['dumb','forced','pssm'],
const='forced',
nargs='?',
help='Which task to perform.\nForced will randomly resolve ambiguous positions from the most likely choices [Default].')
parser.add_argument('alignment',
action='store',
help='The MSA to analyse.')
parser.add_argument('-f',
'--format',
action='store',
default=None,
help='Alignment file format.\nScript will attempt to guess from the extension but may fail.')
parser.add_argument('-v',
'--verbose',
action='store_true',
help='Print additional messages to screen. [False].')
parser.add_argument('-c',
'--cout',
action='store',
default=None,
help='Output file for consensus sequence.\nPrints to screen in fasta format by default.')
parser.add_argument('-p',
'--pout',
action='store',
default=None,
help='Output file to store the Position Specific Score Matrix if -m|--matrix was given. Else prints to screen.')
# Arguments to BioPython's dumb_consensus
parser.add_argument('-t',
'--threshold',
action='store',
type=float,
default=0.7,
help='Frequency threshold for inclusion of residue in to consensus, passes through to the dumb_consensus method.')
parser.add_argument('-a',
'--ambiguous',
action='store',
default='X',
help='The ambiguous character used for dumb consensuses.')
except NameError:
print "An exception occured with argument parsing. Check your provided options."
traceback.print_exc()
sys.exit(1)
return parser.parse_args()
def guess_ext(args):
"""If no input ext was specified, guess it from the extension name or emit a warning"""
extension = os.path.splitext(args.alignment)[1]
if args.verbose is True: print("Extension is " + extension)
# Figure out what extension to return
if extension in (".clust", ".clustal",".aln"):
ext = "clustal"
elif extension in (".emb", ".emboss"):
ext = "emboss"
elif extension in (".fa", ".fasta", ".fas", ".fna", ".faa", ".afasta"):
ext = "fasta"
elif extension in (".phy", ".phylip"):
ext = "phylip"
elif extension in (".nexus", ".paup"):
ext = "nexus"
else:
print("Couldn't determine the file format from the extension. Reattempt with the -f|--format option specified.")
print("Acceptable formats are those supported by BioPython AlignIO. Comprehensive list at http://biopython.org/wiki/AlignIO. Exiting.")
sys.exit(1)
if args.verbose is True: print("Your file looks like: " + ext)
return ext
def dumb_cons(args, msa_summary):
"""Compute a dumb consensus sequence using BioPython"""
return SeqRecord(msa_summary.dumb_consensus(threshold=args.threshold,
ambiguous=args.ambiguous),
id=os.path.basename(args.alignment) + ' consensus',
description='',
name='')
def brute_force_cons(args, msa_summary):
"""Take a consensus sequence similar to Biopython's dumb one,
but randomly resolve equal likelihood residues. This is a majority-rule
consensus, not taking in to consideration thresholds, unlike the dumb_consensus."""
import random
# Prepare the string to be the consensus
consensus = ''
# Iterate the full MSA length column by column
for i in xrange(msa_summary.alignment.get_alignment_length()):
possibles = enumerate_string(msa_summary.get_column(i))
if len(possibles) == 1:
consensus += possibles[0]
else:
consensus += random.choice(possibles)
consensus_record = SeqRecord(Seq(consensus),
id=os.path.basename(args.alignment) + ' consensus',
description='',
name='')
#TODO
# Optionally need to collapse columns which are majority gaps before returning string?
return consensus_record
def enumerate_string(string):
"""Returns the most common characters of a string. Multiple characters are returned if there are equally frequent characters."""
from collections import Counter
# Get counts of each letter in the string
counts = Counter(string)
keys = []
# Iterate each key value pair in the counts dict in case there are tied values
for key, value in counts.iteritems():
# collect all keys which occur equally many times
if value == max(counts.values()):
keys.append(key)
return keys
def main():
"""Call functions to perform MSA analyses."""
args = parse_args()
if args.verbose: print(args)
if args.verbose: print('Format not specified, guessing extension...')
if args.format is None: args.format = guess_ext(args)
msa = AlignIO.read(args.alignment, args.format)
msa_summary = AlignInfo.SummaryInfo(msa)
# Switch for which action is performed
if args.verbose: print("Performing the selected task: " + args.task)
if args.task == "pssm":
pssm = msa_summary.pos_specific_score_matrix()
if args.pout is not None:
if args.verbose is True: print("Saving PSSM to csv file: " + args.pout)
import csv
with open(args.pout, 'wb') as f:
w = csv.DictWriter(f, pssm[0].keys())
w.writerow(dict((fn, fn) for fn in pssm[0].keys()))
w.writerows(pssm)
else:
print(pssm)
sys.exit(0)
elif args.task == "dumb":
consensus = dumb_cons(args, msa_summary)
elif args.task == "forced":
consensus = brute_force_cons(args, msa_summary)
if args.cout is not None:
if args.verbose is True: print('Saving consensus sequence to file: ' + args.cout)
SeqIO.write(consensus, args.cout, 'fasta')
else:
if args.verbose: print('Consensus sequence:')
print(consensus.format('fasta'))
if __name__ == '__main__':
main()