-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathKS.py
60 lines (59 loc) · 2.59 KB
/
KS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
try: # pyfftw is *much* faster
from pyfftw.interfaces import numpy_fft, cache
#print('# using pyfftw...')
cache.enable()
rfft = numpy_fft.rfft; irfft = numpy_fft.irfft
except ImportError: # fall back on numpy fft.
print('# WARNING: using numpy fft (install pyfftw for better performance)...')
def rfft(*args, **kwargs):
kwargs.pop('threads',None)
return np.fft.rfft(*args,**kwargs)
def irfft(*args, **kwargs):
kwargs.pop('threads',None)
return np.fft.irfft(*args,**kwargs)
class KS(object):
#
# Solution of 1-d Kuramoto-Sivashinsky equation, the simplest
# PDE that exhibits spatio-temporal chaos
# (https://www.encyclopediaofmath.org/index.php/Kuramoto-Sivashinsky_equation).
#
# u_t + u*u_x + u_xx + diffusion*u_xxxx = 0, periodic BCs on [0,2*pi*L].
# time step dt with N fourier collocation points.
# energy enters the system at long wavelengths via u_xx,
# (an unstable diffusion term),
# cascades to short wavelengths due to the nonlinearity u*u_x, and
# dissipates via diffusion*u_xxxx.
#
def __init__(self,L=16,N=128,dt=0.5,diffusion=1.0,members=1,rs=None):
self.L = L; self.n = N; self.members = members; self.dt = dt
self.diffusion = diffusion
kk = N*np.fft.fftfreq(N)[0:(N//2)+1] # wave numbers
self.wavenums = kk
k = kk.astype(np.float)/L
self.ik = 1j*k # spectral derivative operator
self.lin = k**2 - diffusion*k**4 # Fourier multipliers for linear term
# random noise initial condition.
if rs is None:
rs = np.random.RandomState()
x = 0.01*rs.standard_normal(size=(members,N))
# remove zonal mean from initial condition.
self.x = x - x.mean()
# spectral space variable
self.xspec = rfft(self.x,axis=-1)
def nlterm(self,xspec):
# compute tendency from nonlinear term.
x = irfft(xspec,axis=-1)
return -0.5*self.ik*rfft(x**2,axis=-1)
def advance(self):
# semi-implicit third-order runge kutta update.
# ref: http://journals.ametsoc.org/doi/pdf/10.1175/MWR3214.1
self.xspec = rfft(self.x,axis=-1)
xspec_save = self.xspec.copy()
for n in range(3):
dt = self.dt/(3-n)
# explicit RK3 step for nonlinear term
self.xspec = xspec_save + dt*self.nlterm(self.xspec)
# implicit trapezoidal adjustment for linear term
self.xspec = (self.xspec+0.5*self.lin*dt*xspec_save)/(1.-0.5*self.lin*dt)
self.x = irfft(self.xspec,axis=-1)