-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcpuconv.py
53 lines (35 loc) · 1.88 KB
/
cpuconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
def convolve(a, b):
image, kernel = [np.array(i).astype(np.float32) for i in [a, b]]
# Sum of absolute values in kernel matrix
kernel_sum = np.absolute(kernel).sum()
# Calculate the dimensions for iteration over the pixels and weights
i_width, i_height = image.shape[1], image.shape[0]
k_width, k_height = kernel.shape[1], kernel.shape[0]
if k_width % 2 == 0 or k_height % 2 == 0:
print("Warning: Kernel dimensions not odd. Centre point ambiguous, could break code.")
padding_w = k_width-1
padding_h = k_height-1
f_width = i_width - padding_w
f_height = i_height - padding_h
# Prepare the output array
filtered = np.zeros((f_height, f_width))
# Iterate over image
for y in range(f_height):
for x in range(f_width):
weighted_pixel_sum = 0 # Initial pixel value
# Iterate over kernel
for ky in range(-int(padding_h/2), int(padding_h/2)+1):
for kx in range(-int(padding_w/2), int(padding_w/2)+1):
# Coordinates of pixel on original image (for each kernel element)
pixel_y = int(y - ky + padding_h/2)
pixel_x = int(x - kx + padding_w/2)
# Set value of pixel based on coordinates
pixel = image[pixel_y, pixel_x]
# Get weight of this pixel from kernel matrix
weight = kernel[ky + int(k_height / 2), kx + int(k_width / 2)]
# Weigh the pixel value and sum, update pixel value for this image coordinate
weighted_pixel_sum += pixel * weight
# Set pixel at location (x,y) in output to sum of the weighed neighborhood
filtered[y, x] = weighted_pixel_sum / kernel_sum
return filtered