forked from scipopt/PySCIPOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmctransp.py
146 lines (120 loc) · 4.65 KB
/
mctransp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
##@file mctransp.py
#@brief a model for the multi-commodity transportation problem
"""
Model for solving the multi-commodity transportation problem:
minimize the total transportation cost for satisfying demand at
customers, from capacitated facilities.
Copyright (c) by Joao Pedro PEDROSO and Mikio KUBO, 2012
"""
from pyscipopt import Model, quicksum, multidict
def mctransp(I,J,K,c,d,M):
"""mctransp -- model for solving the Multi-commodity Transportation Problem
Parameters:
- I: set of customers
- J: set of facilities
- K: set of commodities
- c[i,j,k]: unit transportation cost on arc (i,j) for commodity k
- d[i][k]: demand for commodity k at node i
- M[j]: capacity
Returns a model, ready to be solved.
"""
model = Model("multi-commodity transportation")
# Create variables
x = {}
for (i,j,k) in c:
x[i,j,k] = model.addVar(vtype="C", name="x(%s,%s,%s)" % (i,j,k))
# Demand constraints
for i in I:
for k in K:
model.addCons(sum(x[i,j,k] for j in J if (i,j,k) in x) == d[i,k], "Demand(%s,%s)" % (i,k))
# Capacity constraints
for j in J:
model.addCons(sum(x[i,j,k] for (i,j2,k) in x if j2 == j) <= M[j], "Capacity(%s)" % j)
# Objective
model.setObjective(quicksum(c[i,j,k]*x[i,j,k] for (i,j,k) in x), "minimize")
model.data = x
return model
def make_inst1():
"""creates example data set 1"""
d = {(1,1):80, (1,2):85, (1,3):300, (1,4):6, # {(customer,commodity):demand}}
(2,1):270, (2,2):160, (2,3):400, (2,4):7,
(3,1):250, (3,2):130, (3,3):350, (3,4):4,
(4,1):160, (4,2):60, (4,3):200, (4,4):3,
(5,1):180, (5,2):40, (5,3):150, (5,4):5
}
I = set([i for (i,k) in d])
K = set([k for (i,k) in d])
J,M = multidict({1:3000, 2:3000, 3:3000}) # capacity
produce = {1:[2,4], 2:[1,2,3], 3:[2,3,4]} # products that can be produced in each facility
weight = {1:5, 2:2, 3:3, 4:4} # {commodity: weight}
cost = {(1,1):4, (1,2):6, (1,3):9, # {(customer,factory): cost}
(2,1):5, (2,2):4, (2,3):7,
(3,1):6, (3,2):3, (3,3):4,
(4,1):8, (4,2):5, (4,3):3,
(5,1):10, (5,2):8, (5,3):4
}
c = {}
for i in I:
for j in J:
for k in produce[j]:
c[i,j,k] = cost[i,j] * weight[k]
return I,J,K,c,d,M
def make_inst2():
"""creates example data set 2"""
d = {(1,1):45, # {(customer,commodity):demand}}
(2,1):20,
(3,1):30,
(4,1):30,
}
I = set([i for (i,k) in d])
K = set([k for (i,k) in d])
J,M = multidict({1:35, 2:50, 3:40}) # {factory: capacity}}
produce = {1:[1], 2:[1], 3:[1]} # products that can be produced in each facility
weight = {1:1} # {commodity: weight}
cost = {(1,1):8, (1,2):9, (1,3):14, # {(customer,factory): cost}
(2,1):6, (2,2):12, (2,3):9 ,
(3,1):10, (3,2):13, (3,3):16,
(4,1):9, (4,2):7, (4,3):5 ,
}
c = {}
for i in I:
for j in J:
for k in produce[j]:
c[i,j,k] = cost[i,j] * weight[k]
return I,J,K,c,d,M
def make_inst3():
"""creates example data set 3"""
d = {(1,1):40, (1,2):30, (1,3):10, # {(customer,commodity):demand}}
(2,1):70, (2,2):100, (2,3):100,
(3,1):0, (3,2):0, (3,3):250,
(4,1):60, (4,2):100, (4,3):0,
(5,1):180, (5,2):0, (5,3):0
}
I = set([i for (i,k) in d])
K = set([k for (i,k) in d])
J,M = multidict({1:500, 2:500, 3:500}) # capacity
produce = {1:[2,4], 2:[1,2,3], 3:[2,3,4]} # products that can be produced in each facility
weight = {1:5, 2:2, 3:3, 4:4} # {commodity: weight}
cost = {(1,1):4, (1,2):6, (1,3):9, # {(customer,factory): cost}
(2,1):5, (2,2):4, (2,3):7,
(3,1):6, (3,2):3, (3,3):4,
(4,1):8, (4,2):5, (4,3):3,
(5,1):10, (5,2):8, (5,3):4
}
c = {}
for i in I:
for j in J:
for k in produce[j]:
c[i,j,k] = cost[i,j] * weight[k]
return I,J,K,c,d,M
if __name__ == "__main__":
I,J,K,c,d,M = make_inst3();
model = mctransp(I,J,K,c,d,M)
model.writeProblem("transp.lp")
model.optimize()
print("Optimal value:",model.getObjVal())
EPS = 1.e-6
x = model.data
for (i,j,k) in x:
if model.getVal(x[i,j,k]) > EPS:
print("sending %10s units of %3s from plant %3s to customer %3s" % (model.getVal(x[i,j,k]),k,j,i))