-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotate.py
executable file
·187 lines (163 loc) · 6.98 KB
/
rotate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
# FOLOSIRE
# rotate.py input_file.tif output_file.tif [threshold/cleantext]
# Modul curatarii default este threshold (mai rapid)
import numpy
import cv2
import argparse
def modulstatistic(a, axis=0):
"""Calculeaza modulul statistic (cea mai frecventa valoare dintr-o serie)"""
scores = numpy.unique(numpy.ravel(a))
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = numpy.zeros(testshape)
oldcounts = numpy.zeros(testshape)
for score in scores:
template = a == score
counts = numpy.expand_dims(numpy.sum(template, axis), axis)
mostfrequent = numpy.where(counts > oldcounts, score, oldmostfreq)
oldcounts = numpy.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return int(mostfrequent[0])
# 1.Afla numele fisierului imagine din linia de comanda si incarca fisierul
ap = argparse.ArgumentParser()
ap.add_argument("imagein", help="calea catre fisierul imagine de intrare")
ap.add_argument("imageout", help="calea catre fisierul imagine de iesire")
ap.add_argument(
"modcuratare",
help="modul curatarii imaginii pentru OCR (threshold/cleantext)",
nargs="?",
default="threshold",
)
args = vars(ap.parse_args())
im = cv2.imread(args["imagein"], cv2.IMREAD_GRAYSCALE)
# 2.Curata imaginea (adaptive threshold, dilate and erode, binary threshold,
# Gaussian blur, contrast level adjusting)
if args["modcuratare"] == "cleantext":
inverted = cv2.bitwise_not(im)
filtered = cv2.adaptiveThreshold(
inverted, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, -5
)
blur = cv2.GaussianBlur(filtered, (1, 1), 0)
adjcontrast = cv2.addWeighted(blur, 0.5, blur, 0, 0)
combine = cv2.bitwise_not(inverted * adjcontrast)
blur = cv2.GaussianBlur(combine, (0, 0), 0.8)
im = cv2.normalize(blur, 0, 255, norm_type=cv2.NORM_MINMAX)
else:
filtered = cv2.adaptiveThreshold(
im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, 20
)
kernel = numpy.ones((1, 1), numpy.uint8)
# opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(filtered, cv2.MORPH_CLOSE, kernel)
# _, th1 = cv2.threshold(im, 200, 255, cv2.THRESH_BINARY)
# _, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
blur = cv2.GaussianBlur(im, (1, 1), 0)
# _, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
im = cv2.bitwise_or(blur, closing)
# 3.Inverseaza albul cu negrul
inverted = cv2.bitwise_not(im)
# 4.Aplica algoritmul Hough probabilistic pentru a identifica liniile din imagine
lines = cv2.HoughLinesP(
inverted, 1, numpy.pi / 180, 100, minLineLength=100, maxLineGap=20
)
# 4bis.Deseneaza liniile pe imagine - util in development si debug
"""
print ("Numarul de linii (si de unghiuri) detectate: %d" % len(lines))
cdst = cv2.cvtColor(inverted, cv2.COLOR_GRAY2BGR)
if lines is not None:
for i in range(0, len(lines)):
x1, y1, x2, y2 = lines[i][0]
cv2.line(cdst, (x1, y1), (x2, y2), (0,0,255), 2, cv2.LINE_AA)
cv2.imwrite("hough"+args["imagein"], cdst)
#cv2.imshow(args["imagein"]+" Linii detectate (cu rosu) - Hough Probabilistic", cdst)
#cv2.waitKey(0)
"""
# 5.Calculeaza unghiul de inclinare - in radiani - a fiecarei linii fata de axa x
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
angles.append(numpy.arctan2(y2 - y1, x2 - x1))
# 6.Calculeaza unghiul mediu de inclinare a paginii - in grade si radiani -
# eliminand valorile extreme prin folosirea algoritmului k-means clustering.
elements = numpy.array(angles, dtype=numpy.float32)
# 6.1.Defineste criteriile ( type, max_iter = 10 , epsilon = 1.0 )
criterii = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# 6.2.Aplica k-means clustering
_, labels, centers = cv2.kmeans(
elements, 3, None, criterii, 10, cv2.KMEANS_RANDOM_CENTERS
)
# 6.3.Determina cluster-ul cel mai numeros (cel mai frecvent element
# din label / modulul statistic) si afla unghiul
mostfreqlabel = modulstatistic(labels)
avg_radian = centers[mostfreqlabel]
avg_angle = avg_radian * 180 / numpy.pi
# 7.Sterge din imagine liniile verticale, care incurca OCR.
# 7.1.Determina cluster-ul cu unghiul mediu cel mai departat
# fata de unghiul mediu al cluster-ului cel mai numeros.
maxdiff = 0
labelmaxdiff = -1
for i in range(0, 2):
if abs(abs(centers[i]) - abs(centers[mostfreqlabel])) > maxdiff:
maxdiff = abs(abs(centers[i]) - abs(centers[mostfreqlabel]))
labelmaxdiff = i
# 7.2.Deseneaza linii albe in locul liniilor corespunzatoare
# cluster-ului cu unghiul mediu cel mai departat
for i in range(0, len(lines)):
if labels[i] == labelmaxdiff:
x1, y1, x2, y2 = lines[i][0]
cv2.line(im, (x1, y1), (x2, y2), (255, 255, 255), 2, cv2.LINE_8)
# 7bis.Afiseaza graficul distributiei unghiurilor - util in development si debug
"""
import matplotlib.pyplot as plt
print ("Numarul de linii (si de unghiuri) detectate: %d" % len(lines))
plt.title('Histograma unghiurilor')
plt.xlabel('Unghiuri (in grade)')
plt.ylabel('Numar de unghiuri')
plt.hist((elements[numpy.ravel(labels)==0] * 180 / numpy.pi), 180, [-90,90], log = True, color = 'blue')
plt.hist((elements[numpy.ravel(labels)==1] * 180 / numpy.pi), 180, [-90,90], log = True, color = 'red')
plt.hist((elements[numpy.ravel(labels)==2] * 180 / numpy.pi), 180, [-90,90], log = True, color = 'green')
plt.hist((centers * 180 / numpy.pi), 90, [-90,90], log = True, color = 'yellow')
plt.savefig("hist"+args["imagein"])
#plt.show()
"""
# 8.Roteste imaginea initiala curatata cu unghiul mediu de inclinare.
# Se evita taierea imaginii rotite la margini prin marirea dimensiunii cadrului
# imaginii finale, adaugarea unei borduri si completarea cu alb.
# Daca unghiul este prea aproape de 0 sau +/-90 grade, imaginea
# va fi doar completata cu o bordura alba.
if 3.0 <= abs(avg_angle) <= 87.0:
print(
"Unghiul mediu de inclinare este %f grade si va fi folosit la rotirea paginii"
% avg_angle
)
h, w = im.shape[:2]
img_center = (w / 2, h / 2)
rot = cv2.getRotationMatrix2D(img_center, avg_angle, 1)
sin = numpy.sin(avg_radian)
cos = numpy.cos(avg_radian)
b_w = int((h * abs(sin)) + (w * abs(cos))) + 40
b_h = int((h * abs(cos)) + (w * abs(sin))) + 40
rot[0, 2] += (b_w / 2) - img_center[0]
rot[1, 2] += (b_h / 2) - img_center[1]
im_finala = cv2.warpAffine(
im,
rot,
(b_w, b_h),
flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(255, 255, 255),
)
else:
print(
"Unghiul mediu de inclinare %f grade este prea aproape de 0/+-90 grade. Pagina va fi curatata, nu rotita"
% avg_angle
)
im_finala = cv2.copyMakeBorder(
im, 20, 20, 20, 20, borderType=cv2.BORDER_CONSTANT, value=(255, 255, 255)
)
# 9.Salveaza imaginea curatata si rotita.
# Daca fisierul este TIFF, imaginea finala va fi TIFF comprimat LZW.
cv2.imwrite(args["imageout"], im_finala)
# cv2.imshow(args["imageout"]+" Rotita", im_finala)
# cv2.waitKey(0)