-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
73 lines (61 loc) · 2.07 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import math
import random
import os
import time
from tqdm import tqdm
import json
import string
from argparse import ArgumentParser
import pickle
class RNN(nn.Module):
def __init__(self, , hidden_size, num_layers, output_dim, embedding_size, vocab_size):
super(RNN, self).__init__()
self.hidden_dim = hidden_size
self.layer_dim = num_layers
self.rnn = nn.RNN(embedding_size, hidden_size, num_layers, nonlinearity="relu")
self.embedding = torch.Embedding(vocab_size, embedding_size)
self.W = nn.Linear(hidden_size, output_dim)
self.softmax = nn.Softmax()
self.loss = nn.NLLLoss()
def compute_loss(self, predicted_output, golden_label):
return self.loss(predicted_output, golden_label)
def forward(self, inputs):
embedding = self.embedding(inputs)
out, hn = self.rnn(embedding)
results = self.W(out[-1])
results = self.softmax(results)
return results
def load_data(file_name):
#fill this eventually
return train_data, valid_data, vocab_size
print("===== Loading Data =========")
train_data, valid_data, vocab_size = load_data()
print("===== Vectorizing Data =====")
embedding_size = 128
vocab_size = vocab_size
hidden_size = 256
num_layers = 2
output_dim = 2
model = RNN(hidden_size, num_layers, output_dim, embedding_size, vocab_size)
optimizer = optim.Adam(model.parameters(), lr=0.01)
epoch = 0
stopping_condition = False
while not stopping_condition:
random.shuffle(train_data)
model.train()
print("Started training for epoch: {}".format(epoch + 1))
minibatch_size = 16
N = len(train_data)
correct = 0
total = 0
for minibatch_index in tqdm(N//minibatch_size):
optimizer.zero_grad()
loss = None
for example_index in range(minibatch_size):
input_indices, golden_label = train_data[minibatch_index * minibatch_size + example_index]
input_indices = torch.tensor(input_indices).view(-1, 1)