-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlecture07.tex
138 lines (109 loc) · 4.02 KB
/
lecture07.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\documentclass[notes.tex]{subfiles}
\begin{document}
\lecture{7}{2016--01--29}
% \section*{Left Coset Equivalence (Continued)}
$G$ is a group. $H \le G$ a fixed subgroup of $G$.
Given $x, y\in G$, $x\sim y \pmod H$ iff \[
\inv xy\in H.
\]
Last time: we showed it was an equivalence relation.
What are the equivalence classes of $\sim\pmod H$?
We examine
\begin{align*}
[x] &= \{y\in G: x\sim y\pmod H\}\\
&= \{y\in G : \inv xy\in H\}\\
&= \{y\in G : \exists h \in H (\inv x y = h)\}\\
&= \{y\in G : \exists h\in H (x(\inv xy)=xh)\}\\
&= \{y\in G : \exists h \in H (y = xh)\}
\end{align*}
So, $[x]$ is exactly the set \[
\{xh:h\in H\}.
\]
\begin{notation}
We write $xH$ to abbreviate the set $\{xh:h\in H\}$.
\end{notation}
\begin{definition}
The equivalence class $xH$ is called the (left) \kw{coset} of $x$ with respect to $H$.
\end{definition}
\begin{notation}
The cyclic subgroup of $x$ is denoted by $\langle x\rangle$.
\end{notation}
Examples:
\begin{itemize}
\item $G = (\ZZ, +)$, $H = n\ZZ = $ multiples of $n$.
So $H\le G$. For $x\in\ZZ,$ its coset is $\bar x = \{x+h:h\in n\ZZ\} = \{x + nk:k\in\ZZ\}$
\item $G = S_3 = \{e, \cyc{1 2}, \cyc{1 3}, \cyc{2 3}, \cyc{1 2 3}, \cyc{1 3 2}\}$
Take $H = \{e, \cyc{1 2 3}, \cyc{1 3 2}\} \le S_3$ (the cyclic subgroup of (1 2 3)).
So what are the cosets? $eH = \{eh: h\in H\} = \{h : h \in H\} = H$.
(In general, $eH$ is always just $H$). (Even more generally, $xH = H$ whenever $x\in H$.)
Another coset is (1 2)$H$.
Just compute (1 2)$h$ for each $h\in H$.
Thus \[
\cyc{1 2}H = \left\{
\begin{array}{rll}
\cyc{1 2}&e &= \cyc{1 2}\\
\cyc{1 2}&\cyc{1 2 3} &= \cyc{2 3}\\
\cyc{1 2}&\cyc{1 3 2} &= \cyc{1 3}\\
\end{array}
\right\} = \{\cyc{1 2}, \cyc{2 3}, \cyc{1 3}\}
\]
We note that $\cyc{1 2}H = \cyc{2 3}H = \cyc{1 3}H$, as each of those
are in $\cyc{1 2}H$.
% TODO: MENTION ``EASY'' WAY TO MULTIPLY PERMUTATIONS IN CYCLE NOTATION?
\item
$G = S_3$, $K = \langle\cyc{1 3}\rangle = \{e, \cyc{1 3}\} \le G$.
Analyze cosets mod $K$.
Easy coset: $eK = K$.
For the next coset, choose $\cyc{1 2 3}K$
\[
\cyc{1 2 3}K = \left\{
\begin{array}{ll}
\cyc{1 2 3} \;e &= \cyc{1 2 3}\\
\cyc{1 2 3} \;\cyc{1 3} &= \cyc{2 3}\\
\end{array}
\right\} = \{\cyc{1 2 3}, \cyc{2 3}\}
\]
Next coset after that is $\cyc{1 2}K = \{\cyc{1 2}, \cyc{1 3 2}\}$.
We note that the equivalence classes mod $K$ partition $S_3$, Although they are not all subgroups.
\end{itemize}
In the last two examples, it wasn't a coincidence that each coset was of the same cardinality.
\begin{proposition}
Suppose $G$ is a group, $H\le G$, and $x\in G$. Then $|xH| = |H|$.
\end{proposition}
\begin{proof}
We establish a bijection between $H$ and $xH$.
Define $\varphi:H\to xH$, $\varphi(h) = xh$.
\begin{claim}[1]
$\varphi$ is surjective.
\end{claim}
\begin{proof}
Suppose $y \in xH$.
By definition of $xH$, $\exists h\in H$ such that $y=xh$. So, $y=\varphi(h)$.\qedhere(C1)
\end{proof}
\begin{claim}[2]
$\varphi$ is injective.
\end{claim}
\begin{proof}
Suppose $h_1, h_2\in H$ such that $\varphi(h_1) = \varphi(h_2)$.
By definition of $\varphi,$ we have $xh_1 = xh_2$. Since $G$ is a group, $x$ has an inverse $\inv x$.
Thus, $\inv x(xh_1) = \inv x(xh_2)\implies h_1=h_2$ as desired. \qedhere(C2)
\end{proof}
Thus $\varphi$ is a bijection, meaning $|xH| = |H|$ as desired.\qedhere(Prop.)
\end{proof}
\begin{theorem}[Lagrange's Theorem]\index{Lagrange's Theorem}\label{lagrange}
Suppose that $G$ is a finite group and $H\le G$.
Then $|H|$ divides $|G|$.
\end{theorem}
\begin{proof}
Left coset equivalence partitions $G$ into $k$ equivalence classes of size $|H|$. \\
\hspace{3em}
Thus $|G| = k|H|$, as desired.
\end{proof}
\begin{corollary}
Suppose that $G$ is a finite group and $x\in G$. Then $|x|$ divides $|G|$.
\end{corollary}
\begin{proof}
Consider $\langle x\rangle$ (the cyclic subgroup generated by $x$).
$\langle x\rangle = \{e, x, x^2, \ldots, x^{n-1}\}$, where $|x| = n$. $|\langle x\rangle| = n$. Hence $n = |x|$ divides $|G|$.
\end{proof}
\end{document}