-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlecture08.tex
170 lines (135 loc) · 4.99 KB
/
lecture08.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
\documentclass[notes.tex]{subfiles}
\begin{document}
\lecture{8}{2016--02--01}
We go to the previous lecture for examples.
Consider
$G = S_3, H = \{e, \cyc{1 2 3}, \cyc{1 3 2}\} \le G$, $K = \langle\cyc{1 3}\rangle = \{e, \cyc{1 3}\} \le G$.
\begin{defn}
If $G$ is a group and $H\le G$, denote by $G/H$ ($G$ ``mod'' $H$) the collection of (left) cosets of $H$ in $G$.
\end{defn}
\begin{eg}\leavevmode
\begin{enumerate}[(a)]
\item $n\ZZ\le\ZZ$, $\ZZ/n\ZZ = \{\bar0, \bar1, \ldots, \overline{n-1}\}$
\item $S_3/H = \{eH, \cyc{1 2}H\}$, $\quad eH = H$, $\quad\cyc{1 2}H = \{\cyc{1 2}, \cyc{2 3}, \cyc{1 3}\}$
\item $S_3/K$ = $\{\{e, \cyc{1 3}\}, \{\cyc{1 2 3}, {2 3}\}, \{\cyc{1 2}, \cyc{1 3 2}\}\}$
\end{enumerate}
\end{eg}
\chapter{Normal Subgroups}
Fundamental question: When is there ``natural'' group operation on $G/H$?
Prototype: $\ZZ/n\ZZ$, $\bar x + \bar y = \bar{x+y}$.
Natural Attempt: \[
(g_1H)(g_2(H))\overop=?(g_1g_2)H.
\] This works fine for (b) in the sense that if $g_1H = g_2H$ and $k_1H = k_2H$ then $(g_1k_1)H = (g_2k_2)H$ (verification left to reader).
But it \emph{doesn't} work for (c).
$e$ and (1 3) both represent $eK$. But they give \emph{different} cosets after multiplication by (1 2 3).
\begin{itemize}
\item $e\cyc{1 2 3} = \cyc{1 2 3}$
\item $\cyc{1 3}\cyc{1 2 3} = \cyc{1 2}$.
\end{itemize}
In general, what would we need to have, in order to have multiplication in $G/H$ be ``well-defined?''
We want:
$\underbrace{x_1\sim x_2}_{\inv x_1x_2=h\in H}$ and $\underbrace{y_1\sim y_2}_{\inv y_1y_2=k\in H}$ $\implies x_1y_1\sim x_2y_2$.
Thus, we want $(x_1y_1)^{-1}(x_2y_2)\in H$.
\[
(x_1y_1)^{-1}(x_2y_2)
=(\inv y_1\inv x_1)(x_2y_2)
= \inv y_1(\inv x_1x_2)y_1k
= \underbrace{\inv y_1hy_1}_{\in H}\underbrace{k}_{\in H}
\in H
\]
This expression motivates the definition of a \kw{normal subgroup}
\begin{defn}
If $G$ is a group, and $N\le G,$ we say $N$ is \kw{normal} if for all $n\in N$, and $g\in G$, we have $\inv gng\in N$. We write this as $N\nsubgrp G.$
\end{defn}
\begin{remark}
For fixed $g\in G$, the map for $x\in G$ \[
x\mapsto \inv gxg
\]
is called \kw{conjugation by $g$}.
\end{remark}
Thus, $N$ is normal if it is stable under all conjugation.
\begin{theorem}
Let $G$ a group $H\le G$. Then the following are equivalent:
\begin{enumerate}[(I)]
\item $(g_1H)(g_2H) = (g_1g_2)H$ is a well-defined group operation on $G/H$.
\item $H\nsubgrp G$.
\end{enumerate}
\begin{proof}[(II) $\implies$ (I)]
$\inv x_1x_2=h, \inv y_1y_2=k$. (Exercise for the reader) % TODO: add proof?
\end{proof}
\begin{proof}[(I) $\implies$ (II)]
Suppose $h\in H$ and $g\in H$
want $\inv ghg\in H$.
Note: $e\sim h$ since $\inv eh=h\in H$.
By (I),we have $ (eg)H =(eH)(gH) = (hH)(gH) = (hg)H$.
So, $gH = (hg)H$, meaning $g\sim hg$, so $\inv ghg\in H$. \qedhere(Thm)
\end{proof}
\end{theorem}
\begin{proposition}
If $G$ is abelian, every subgroup is normal.
\end{proposition}
\begin{proof}
Fix $H\le G$, $h\in H$, $g\in G.$
Then $\inv ghg = \inv ggh =h\in H$.
\end{proof}
\begin{proposition}
$G\nsubgrp G$ and $\{e\}\nsubgrp G$.
\end{proposition}
\begin{proof}
$\inv ghg \in G$ and $\inv geg = \inv gg = e\in \{e\}$.
\end{proof}
\begin{defn}
For $A\subseteq G$, denote by $\inv gAg$ the set $\{\inv gag : a\in A\}$.
Called \kw{the conjugate of $A$ by $G$}.
\end{defn}
\begin{remark}
Thus, $N$ is normal $iff$ $N\le G$ and $\forall g\in G: \inv gNg \subseteq N$.
\end{remark}
\begin{proposition}
$N\nsubgrp G \implies \forall g\in G: \inv gNg=N$
\end{proposition}
\begin{proof}
Fix $n\in N$. we want $n\in \inv gNg$. (This shows $N\subseteq\inv gNg$.)
We know by $N\nsubgrp G$ that $m =(\inv g)^{-1}n(\inv g)\in N$.
Then $m=gn\inv g$.
\begin{claim}
$\inv gmg=n$
\end{claim}
\begin{proof}
$\inv g(gn\inv g)g=\cancel{(\inv gg)}n\cancel{(\inv gg)} = n$
\qedhere(Claim)
\end{proof}
\qedhere(Prop)
\end{proof}
\chapter{Homomorphisms}
\begin{defn}
Suppose $G, H$ are groups and $\varphi:G\to H$ is a function.
We say $\varphi$ is a \kw{homomorphism} if $\forall g_1, g_2\in G: \phi(g_1 *_G g_2) = \varphi(g_1) *_H \varphi(g_2)$.
\end{defn}
\begin{defn}
Suppose $\varphi:G\to H$ is a homomorphism. The \kw{Kernel} of $\phi$ is $\Ker(\varphi) = \{g\in G : \varphi(g) = e_H\} = \varphi^{-1}(\{e_H\})$.
\end{defn}
\begin{proposition}
Suppose $\varphi:G\to H$ is a homomorphism between groups.
Then $K=\Ker(\varphi) \nsubgrp G$.
\end{proposition}
\begin{proof}
\begin{claim}[1]
$K \ne \vs$. In fact, $e_G\in K$.
\end{claim}
\begin{proof}
We know that $e_G$ is the unique element of $G$ such that $\forall g\in G(e_Gg=ge_g = g)$.
So, $\varphi(e_G) = \varphi(e_Ge_G) = \varphi(e_G)\varphi(e_G) = \varphi(e_G)$
Multiplying both sides by $\varphi(e_G)^{-1}\in H$
So $\varphi(e_G) = e_H$.\qedhere(C1)
\end{proof}
\begin{claim}[2]
$\forall g\in G \vphi(\inv g) = (\vphi(g))^{-1}$
\end{claim}
\begin{proof}
$\vphi(\inv g)\vphi(g) = \vphi(g\inv g) = \vphi(e_G) = e_H$
By symmetry, $\vphi(g)\vphi(\inv g) = e_H$\qedhere(C2)
\end{proof}
\qedhere(Prop.)
\end{proof}
\end{document}