forked from trondkr/model2roms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIOsubset.py
161 lines (130 loc) · 6.51 KB
/
IOsubset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
from datetime import datetime
__author__ = 'Trond Kristiansen'
__email__ = '[email protected]'
__created__ = datetime(2010, 1, 7)
__modified__ = datetime(2013, 7, 1)
__version__ = "0.1"
__status__ = "Development, modified on 07.01.2010, 01.07.2013, 11.03.2014"
def find_subset_indices(grdMODEL, min_lat, max_lat, min_lon, max_lon):
"""
Get the indices that covers the new grid, and enables us to only store a subset of
the large input grid. This routine checks wether you cross the 0 longitude line, so
that start is in the West (negative longitudes) and end point is in the East (positive longitudes).
if that is the case, the extraction of data is split at the 0 line so that we first get all
data in the Western region before all the data in the Eastern region is taken. Then we combine the two arrays
so that West comes before East. This is not the case in an array where the longitude values goes from 0 to 360. In such an
array (as SODA is), the Westernmost data comes after the Easternmost. Therefore we need to concentate
the Westernomst data into an array with the Easternomst data in the correct order.
Input: Input longitudes has to range from -180 to 180
Returns: list of indices, boolean value that is True of splitting occurs (crosses 0 long)
Indices are returned so that the Westernomst comes first
Trond Kristiansen, 22.07.2009, 08.01.2010, 01.07.2013, 11.03.2014
"""
if min_lon < 0 and max_lon > 0:
splitExtract = True
Turns = 2
grdMODEL.splitExtract = splitExtract
else:
splitExtract = False
Turns = 1
grdMODEL.splitExtract = splitExtract
grdMODEL.lon = np.where(grdMODEL.lon > 180, grdMODEL.lon - 360, grdMODEL.lon)
# Array to store the results returned from the function
res = np.zeros((Turns, 4), dtype=np.float)
lats = grdMODEL.lat[:, 0]
lons = grdMODEL.lon[0, :]
for k in range(Turns):
if k == 0 and splitExtract == True:
minLon = min_lon
maxLon = 0
minLon = minLon + 360
maxLon = maxLon + 360
elif k == 1 and splitExtract == True:
minLon = 0
maxLon = max_lon
else:
minLon = min_lon
maxLon = max_lon
distances1 = []
distances2 = []
indices = []
index = 1
for point in lats:
s1 = max_lat - point # (vector subtract)
s2 = min_lat - point # (vector subtract)
distances1.append((np.dot(s1, s1), point, index))
distances2.append((np.dot(s2, s2), point, index - 1))
index = index + 1
distances1.sort()
distances2.sort()
indices.append(distances1[0])
indices.append(distances2[0])
distances1 = []
distances2 = []
index = 1
for point in lons:
s1 = maxLon - point # (vector subtract)
s2 = minLon - point # (vector subtract)
distances1.append((np.dot(s1, s1), point, index))
distances2.append((np.dot(s2, s2), point, index - 1))
index = index + 1
distances1.sort()
distances2.sort()
indices.append(distances1[0])
indices.append(distances2[0])
# Save final product: max_lat_indices,min_lat_indices,max_lon_indices,min_lon_indices
minJ = indices[1][2]
maxJ = indices[0][2]
minI = indices[3][2]
maxI = indices[2][2]
res[k, 0] = minI
res[k, 1] = maxI
res[k, 2] = minJ
res[k, 3] = maxJ
# Save final product: max_lat_indices,min_lat_indices,max_lon_indices,min_lon_indices
grdMODEL.indices = res
def checkDomain(grdMODEL, grdROMS):
lonCHECK = False
latCHECK = False
if grdMODEL.lon.min() <= grdROMS.lon_rho.min() and grdMODEL.lon.max() >= grdROMS.lon_rho.max():
lonCHECK = True
if grdMODEL.lat.min() <= grdROMS.lat_rho.min() and grdMODEL.lat.max() >= grdROMS.lat_rho.max():
latCHECK = True
print("\n--------------------------")
print(("---> Area output files : (longitude=%3.2f,latitude=%3.2f) to (longitude=%3.2f,latitude=%3.2f)" % (
grdROMS.lon_rho.min(), grdROMS.lat_rho.min(), grdROMS.lon_rho.max(), grdROMS.lat_rho.max())))
print(("---> Area forcing files : (longitude=%3.2f,latitude=%3.2f) to (longitude=%3.2f,latitude=%3.2f)" % (
grdMODEL.lon.min(), grdMODEL.lat.min(), grdMODEL.lon.max(), grdMODEL.lat.max())))
if latCHECK is True and lonCHECK is True:
print("Domain check passed: Input domain data covers output domain")
else:
print("WARNING: Your input domain is smaller or not overlaying your output domain")
print("IOsubset.py: EXIT")
# sys.exit()
print("\n--------------------------")
def organize_split(grdMODEL, grdROMS):
if grdMODEL.splitExtract is True:
print("\nThe subset crosses the 0 degrees longitude line.")
print("Need to split the extraction of data into Western and")
print("Eastern region. The two regions will be concatenated again.\n")
"""Save longitude and latitude values so that only variables are needed to be extracted after first loop"""
lon1 = grdMODEL.lon[int(grdMODEL.indices[0, 2]):int(grdMODEL.indices[0, 3]),
int(grdMODEL.indices[0, 0]):int(grdMODEL.indices[0, 1])]
lat1 = grdMODEL.lat[int(grdMODEL.indices[0, 2]):int(grdMODEL.indices[0, 3]),
int(grdMODEL.indices[0, 0]):int(grdMODEL.indices[0, 1])]
lon2 = grdMODEL.lon[int(grdMODEL.indices[1, 2]):int(grdMODEL.indices[1, 3]),
int(grdMODEL.indices[1, 0]):int(grdMODEL.indices[1, 1])]
lat2 = grdMODEL.lat[int(grdMODEL.indices[1, 2]):int(grdMODEL.indices[1, 3]),
int(grdMODEL.indices[1, 0]):int(grdMODEL.indices[1, 1])]
# Convert the positive numbers above 180 to negative values
lon1 = np.where(lon1 > 180, lon1 - 360, lon1)
grdMODEL.lon = np.concatenate((lon1, lon2), axis=1)
grdMODEL.lat = np.concatenate((lat1, lat2), axis=1)
print(("Subset extracted for domain from West (%s) to East (%s)\n" % (grdMODEL.lon.min(), grdMODEL.lon.max())))
else:
grdMODEL.lon = grdMODEL.lon[int(grdMODEL.indices[0, 2]):int(grdMODEL.indices[0, 3]),
int(grdMODEL.indices[0, 0]):int(grdMODEL.indices[0, 1])]
grdMODEL.lat = grdMODEL.lat[int(grdMODEL.indices[0, 2]):int(grdMODEL.indices[0, 3]),
int(grdMODEL.indices[0, 0]):int(grdMODEL.indices[0, 1])]
checkDomain(grdMODEL, grdROMS)