forked from trondkr/model2roms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculateGRDMetrics.py
214 lines (156 loc) · 7.9 KB
/
calculateGRDMetrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import time
from datetime import datetime
import model2roms
import IOstation
import clim2bry
import decimateGrid
import grd
import numpy as np
import atmosForcing
__author__ = 'Trond Kristiansen'
__email__ = '[email protected]'
__created__ = datetime(2015, 7, 7)
__modified__ = datetime(2015, 7, 7)
__version__ = "1.0"
__status__ = "Development"
doc = """ dist = greatCircle(lon1,lat1,lon2,lat2]
greatCircle: Coumputes great circle distance between to points
This function computes great circle distance between two longitude and latitude points.
The Earth is assumed to be a sphere. This approximation is valid for short distances.
On Input: Longitude is positive to the east and negative to the
west. Latitude is positive to the north and negative
to the south.
lon1 longitude point 1 [decimal degrees]
lat1 latitude point 1 [decimal degrees]
lon2 longitude point 2 [decimal degrees]
lat2 latitude point 2 [decimal degrees]
On Output:
dist great circle distance between point 1 and point 2
[meters]
Adapted from routine written by Pat J. Haley [Harvard University].
"""
def greatCircle(lon1, lat1, lon2, lat2):
# ----------------------------------------------------------------------------
# Set often used parameters.
# ----------------------------------------------------------------------------
radius = 6371.315
deg2rad = np.pi / 180.0
rad2deg = 180.0 / np.pi
# ----------------------------------------------------------------------------
# Convert to radians.
# ----------------------------------------------------------------------------
slon = np.multiply(lon1, deg2rad)
slat = np.multiply(lat1, deg2rad)
elon = np.multiply(lon2, deg2rad)
elat = np.multiply(lat2, deg2rad)
# ----------------------------------------------------------------------------
# Compute distance along great circle [kilometers].
# ----------------------------------------------------------------------------
alpha = np.multiply(np.sin(slat), np.sin(elat)) + np.cos(slat) * np.cos(elat) * np.cos(elon - slon)
alpha = np.arccos(alpha)
# km2meter=1000.
dist = np.multiply(radius, alpha) # *km2meter
return dist
def calculateGridMetrics(G, GreatCircle, decimate, startindex, endindex):
doc2 = """function [pm, pn, dndx, dmde] = grid_metrics[G, GreatCircle]
GRID_METRICS: Compute ROMS Grid horizontal metrics
[pm, pn, dndx, dmde] = grid_metrics[G, GreatCircle]
decimate is used for createing a smaller grid basedon the input data.
The new grid uses every 'decimate' point to calculate the metrics.
This function computes horizontal grid spacing metrics from
Grid NetCDF file or Grid structure G.
On Input:
G A ROMS grid structure as defined in grd.py
GreatCircle Switch indicating how to compute the grid distance:
GreatCircle = true Great-circle distance
GreatCircle = false Cartesian distance
On Output:
pm Curvilinear coordinate metric in the XI-direction
[1/meters dx = 1/pm]
pm Curvilinear coordinate metric in the ETA-direction
[1/meters dy = 1/pn]
dndx XI-derivative of inverse metric factor pn [meters],
d[pn]/d[XI]
dmde ETA-derivative of inverse metric factor pm [meters],
d[pm]/d[ETA]
If G is a Grid structure and GreatCircle=true, the following values are
needed to compute the great circle distances [G.spherical must be 1]:
G.spherical Grid spherical flag [0 | 1]
G.lon_rho RHO-points longitude [decimal degrees]
G.lat_rho RHO-points latitude [decimal degrees]
G.lon_u U-points longitude [decimal degrees]
G.lat_u U-points latitude [decimal degrees]
G.lon_v V-points longitude [decimal degrees]
G.lat_v V-points latitude [decimal degrees]
longitude: positive East, negative West
latitude: positive North, negative South
Otherwise, if G is a grid structure and GreatCircle=false, the following
values are needed to compute Cartesian distances regardless the value of
G.spherical:
G.spherical Grid spherical flag [0 | 1]
G.x_rho RHO-points X-location [meters]
G.y_rho RHO-points Y-location [meters]
G.x_u U-points X-location [meters]
G.x_u U-points Y-location [meters]
G.x_v V-points X-location [meters]
G.x_v V-points Y-location [meters]
=========================================================================%
Copyright [c] 2002-2014 The ROMS/TOMS Group %
Licensed under a MIT/X style license %
See License_ROMS.txt Hernan G. Arango %
=========================================================================%
"""
# Get Grid coordinates.
spherical = G.spherical
if GreatCircle is True and spherical == "T":
Xr = G.lon_rho[startindex:endindex:decimate, startindex:endindex:decimate]
Yr = G.lat_rho[startindex:endindex:decimate, startindex:endindex:decimate]
Xu = G.lon_u[startindex:endindex:decimate, startindex:endindex:decimate]
Yu = G.lat_u[startindex:endindex:decimate, startindex:endindex:decimate]
Xv = G.lon_v[startindex:endindex:decimate, startindex:endindex:decimate]
Yv = G.lat_v[startindex:endindex:decimate, startindex:endindex:decimate]
else:
Xr = G.x_rho[startindex:endindex:decimate, startindex:endindex:decimate]
Yr = G.y_rho[startindex:endindex:decimate, startindex:endindex:decimate]
Xu = G.x_u[startindex:endindex:decimate, startindex:endindex:decimate]
Yu = G.y_u[startindex:endindex:decimate, startindex:endindex:decimate]
Xv = G.x_v[startindex:endindex:decimate, startindex:endindex:decimate]
Yv = G.y_v[startindex:endindex:decimate, startindex:endindex:decimate]
# ----------------------------------------------------------------------------
# Compute grid spacing [meters].
# ----------------------------------------------------------------------------
Mp = len(Xr[:, 0])
Lp = len(Xr[0, :])
L = Lp
Lm = L - 1
M = Mp
Mm = M - 1
dx = np.zeros((Mp, Lp))
dy = np.zeros((Mp, Lp))
# Compute grid spacing.
if GreatCircle and spherical:
dx[1:M, 0:Lp] = greatCircle(Xr[0:Mm, 0:Lp], Yr[0:Mm, 0:Lp],
Xr[1:M, 0:Lp], Yr[1:M, 0:Lp])
dx[0, 0:Lp] = greatCircle(Xr[0, 0:Lp], Yr[0, 0:Lp],
Xr[1, 0:Lp], Yr[1, 0:Lp])
dx[-1, 0:Lp] = greatCircle(Xr[-2, 0:Lp], Yr[-2, 0:Lp],
Xr[-1, 0:Lp], Yr[-1, 0:Lp])
dy[0:Mp, 1:Lp] = greatCircle(Xr[0:Mp, 0:Lm], Yr[0:Mp, 0:Lm],
Xr[0:Mp, 1:Lp], Yr[0:Mp, 1:Lp])
dy[0:Mp, 0] = greatCircle(Xr[0:Mp, 0], Yr[0:Mp, 0],
Xr[0:Mp, 1], Yr[0:Mp, 1])
dy[0:Mp, -1] = greatCircle(Xr[0:Mp, -2], Yr[0:Mp, -2],
Xr[0:Mp, -1], Yr[0:Mp, -1])
dx = dx * 1000. # great circle function computes
dy = dy * 1000. # distances in meters
# Compute inverse grid spacing metrics.
pm = 1.0 / dx
pn = 1.0 / dy
# ----------------------------------------------------------------------------
# Compute inverse metric derivatives.
# ----------------------------------------------------------------------------
dndx = np.zeros(np.shape(Xr))
dmde = np.zeros(np.shape(Xr))
dndx[1:Mp - 1, 1:Lp - 1] = 0.5 * (1.0 / pn[2:Mp, 1:Lp - 1] - 1.0 / pn[0:Mp - 2, 1:Lp - 1])
dmde[1:Mp - 1, 1:Lp - 1] = 0.5 * (1.0 / pm[1:Mp - 1, 2:Lp] - 1.0 / pm[1:Mp - 1, 1:Lp - 1])
return dndx, dmde, pm, pn