-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
70 lines (56 loc) · 2.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import math
import numpy as np
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import serializers
from chainer import Variable
class FCN(chainer.Chain):
def __init__(self, n_class=21):
super(FCN, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
pool3=L.Convolution2D(256, n_class, 1, stride=1, pad=0),
pool4=L.Convolution2D(512, n_class, 1, stride=1, pad=0),
pool5=L.Convolution2D(512, n_class, 1, stride=1, pad=0),
upsample4=L.Deconvolution2D(n_class, n_class, ksize= 4, stride=2, pad=1),
upsample5=L.Deconvolution2D(n_class, n_class, ksize= 8, stride=4, pad=2),
upsample =L.Deconvolution2D(n_class, n_class, ksize=16, stride=8, pad=4),
)
self.train = False
def calc(self, x, test=False):
h = F.relu(self.conv1_2(F.relu(self.conv1_1(x))))
h = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv2_2(F.relu(self.conv2_1(h))))
h = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv3_3(F.relu(self.conv3_2(F.relu(self.conv3_1(h))))))
p3 = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv4_3(F.relu(self.conv4_2(F.relu(self.conv4_1(p3))))))
p4 = F.max_pooling_2d(h, 2, stride=2)
h = F.relu(self.conv5_3(F.relu(self.conv5_2(F.relu(self.conv5_1(p4))))))
p5 = F.max_pooling_2d(h, 2, stride=2)
p3 = self.pool3(p3)
p4 = self.upsample4(self.pool4(p4))
p5 = self.upsample5(self.pool5(p5))
h = p3 + p4 + p5
o = self.upsample(h)
return o
def __call__(self, x, t=None, train=False, test=False):
h = self.calc(x, test)
if train:
loss = F.softmax_cross_entropy(h, t)
return loss
else:
pred = F.softmax(h)
return pred