-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathminimax_player.py
433 lines (338 loc) · 15.6 KB
/
minimax_player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Written by Michelle Blom, 2019
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
from advance_model import *
from utils import *
import math
import copy
import collections
class myPlayer(AdvancePlayer):
def __init__(self, _id):
super().__init__(_id)
def get_remainder(self, ps, line_idx, num_to_line):
remainder = 0
if ps.lines_tile[line_idx] != -1:
num_exist = ps.lines_number[line_idx]
remainder = line_idx + 1 - (num_exist + num_to_line)
else:
assert ps.lines_number[line_idx] == 0
remainder = line_idx + 1 - num_to_line
return remainder
def TileToNum(self, tile):
if tile == Tile.BLUE:
return 0
elif tile == Tile.YELLOW:
return 1
elif tile == Tile.RED:
return 2
elif tile == Tile.BLACK:
return 3
elif tile == Tile.WHITE:
return 4
else:
return 9
def get_dotproduct(self, game_state, plr_state, enemy_state, round_num):
factory_list = [0, 0, 0, 0, 0]
for i in range(5):
factory = game_state.factories[i].tiles
for j in range(len(factory)):
factory_list[j] += factory[j]
for j in range(len(game_state.centre_pool.tiles)):
factory_list[j] += game_state.centre_pool.tiles[j]
arr = [[],[],[],[],[]]
#arr [0] = ['B', 'Y', 'R', 'K', 'W']
#arr [1] = ['W' ,'B','Y','R','K']
#arr [2] = ['K', 'W', 'B', 'Y', 'R']
#arr [3] = ['R', 'K', 'W', 'B', 'Y']
#arr [4] = ['Y', 'R', 'K', 'W', 'B']
arr [0] = [0, 1, 2, 3, 4]
arr [1] = [4 ,0, 1, 2, 3]
arr [2] = [3, 4, 0, 1, 2]
arr [3] = [2, 3, 4, 0, 1]
arr [4] = [1, 2, 3, 4, 0]
enemy_wanted_list = [0, 0, 0, 0, 0]
enemy_floor = 0
for i in range(enemy_state.GRID_SIZE):
if enemy_state.floor[i] == 1:
enemy_floor+=1
if enemy_state.lines_tile[i] != -1:
tt = enemy_state.lines_tile[i]
tile_index = self.TileToNum(tt)
num_exist = enemy_state.lines_number[i]
wanted = i + 1 - num_exist
enemy_wanted_list[tile_index] += wanted
else:
point= [0,0,0,0,0]
for j in range(5):
if enemy_state.grid_state[i][j] != 0:
if j>1:
if enemy_state.grid_state[i][j-2]!=0:
point[j-1]+=1
if i<4 and j>0 and enemy_state.grid_state[i+1][j-1]!=0:
point[j-1]+=1
if i>0 and j>0 and enemy_state.grid_state[i-1][j-1]!=0:
point[j-1]+=1
if j<3:
if enemy_state.grid_state[i][j+2]!=0:
point[j+1]+=1
if i<4 and j<4 and enemy_state.grid_state[i+1][j+1]!=0:
point[j+1]+=1
if i>0 and j<4 and enemy_state.grid_state[i-1][j+1]!=0:
point[j+1]+=1
grid_wanted_idx = point.index(max(point))
tile_index = arr[i][grid_wanted_idx]
enemy_wanted_list[tile_index] += i+1
for i in range(5):
enemy_wanted_list[i] = factory_list[i] - enemy_wanted_list[i]
my_list = [0, 0, 0, 0, 0]
player_floor = 0
for i in range(plr_state.GRID_SIZE):
if plr_state.floor[i] == 1:
player_floor+=1
if plr_state.lines_tile[i] != -1:
tt = plr_state.lines_tile[i]
tile_index = self.TileToNum(tt)
num_exist = plr_state.lines_number[i]
my_list[tile_index] += num_exist
hindrance_point = 0
test = []
for i in range(5):
if enemy_wanted_list[i]>0 and enemy_wanted_list[i] < my_list[i]:
if round_num >3:
hindrance_point+=2
if round_num >2:
hindrance_point+=1.5
if round_num >1:
hindrance_point+=1
else:
hindrance_point+=0.8
elif enemy_wanted_list[i]>0 and my_list[i]>0 and enemy_wanted_list[i] > my_list[i]:
hindrance_point+=0.5
elif enemy_wanted_list[i]<0 and my_list[i]==0:
hindrance_point+=1
return hindrance_point, player_floor, enemy_floor
def get_estimated_bonus(self, game_state, player_state, round_num):
row_score = self.get_bonus(2, game_state, player_state, round_num, 'row')
column_score = self.get_bonus(7, game_state, player_state, round_num, 'col')
set_score = self.get_bonus(10, game_state, player_state, round_num , 'set')
return row_score + column_score + set_score
def get_bag(self, game_state):
bag_dic = collections.defaultdict(int)
factory_centre = collections.defaultdict(int)
for tile in game_state.bag:
bag_dic[tile] += 1
for factory in game_state.factories:
for tile in range(5):
bag_dic[tile] += factory.tiles[tile]
factory_centre[tile] += factory.tiles[tile]
for tile in range(5):
bag_dic[tile] += game_state.centre_pool.tiles[tile]
factory_centre[tile] += game_state.centre_pool.tiles[tile]
return bag_dic
def get_bonus(self, bonus_unit, game_state, player_state, round_num, flag):
bag_dic = self.get_bag(game_state)
estimated_bonus = 0
for i in range(5):
each_unit = 0
vacant_unit = collections.defaultdict(int)
for j in range(5):
if flag == 'row':
row_index = i
column_index = j
tile_type = numpy.where(player_state.grid_scheme[i] == j)[0]
elif flag == 'col':
row_index = j
column_index = i
tile_type = numpy.where(player_state.grid_scheme[j] == i)[0]
else: #set
row_index = j
column_index = int(player_state.grid_scheme[j][i])
tile_type = i
if player_state.grid_state[row_index][column_index] == 1:
each_unit += 1
elif player_state.grid_state[row_index][column_index] == 0:
left = 0
if player_state.lines_tile[row_index] == tile_type:
left = player_state.lines_number[row_index]
vacant_unit[int(tile_type)] += row_index + 1 - left
feasible = True
for tile in vacant_unit.keys():
if not tile in bag_dic.keys() or vacant_unit[tile] > bag_dic[tile]:
feasible = False
if each_unit >= round_num and feasible:
estimated_bonus += each_unit * bonus_unit/5
estimated_bonus = estimated_bonus*0.9**(4-round_num)
return estimated_bonus
def get_concentraionpoint(self, ps):
arr = [[],[],[],[],[]]
#arr [0] = ['B', 'Y', 'R', 'K', 'W']
#arr [1] = ['W' ,'B','Y','R','K']
#arr [2] = ['K', 'W', 'B', 'Y', 'R']
#arr [3] = ['R', 'K', 'W', 'B', 'Y']
#arr [4] = ['Y', 'R', 'K', 'W', 'B']
arr [0] = [1, 1, 1, 1, 1]
arr [1] = [1 ,2, 2, 2, 1]
arr [2] = [1, 2, 3, 2, 1]
arr [3] = [1, 2, 2, 2, 1]
arr [4] = [1, 1, 1, 1, 1]
point = 0
for i in range(5) :
for j in range(5):
if ps.grid_state[i][j] != 0 :
if i<4 and ps.grid_state[i+1][j] == 0:
point+=1
if i>0 and ps.grid_state[i-1][j] == 0:
point+=1
if j<4 and ps.grid_state[i][j+1] == 0:
point+=1
if j>0 and ps.grid_state[i][j-1] == 0:
point+=1
point = -point #84
return point
def get_grid_tileCnt(self, game_state):
player_grid_cnt =0
enemy_grid_cnt =0
plr_state = game_state.players[self.id]
enemy_state = game_state.players[self.id*-1 + 1]
player_tile_exist = 0
enemy_tile_exist = 0
for i in range(plr_state.GRID_SIZE):
tt = plr_state.lines_tile[i]
player_tile_exist += plr_state.lines_number[i]
for j in range(5):
if plr_state.grid_state[i][j] != 0:
player_grid_cnt+=1
for i in range(enemy_state.GRID_SIZE):
tt = enemy_state.lines_tile[i]
enemy_tile_exist += enemy_state.lines_number[i]
for j in range(5):
if enemy_state.grid_state[i][j] != 0:
enemy_grid_cnt+=1
return (player_grid_cnt - enemy_grid_cnt), (player_tile_exist - enemy_tile_exist)
def evaluate(self, game_state):
"""
Simple evaluation of game state using player scores
"""
round_num = (4 - len(game_state.bag) // 20)
game_state_eval = copy.deepcopy(game_state)
enemy_id = self.id*-1 + 1
plr_state = game_state_eval.players[self.id]
enemy_state = game_state_eval.players[enemy_id]
game_state_eval.ExecuteEndOfRound()
grid_tile_cnt_diff, tile_exist_diff = self.get_grid_tileCnt(game_state_eval)
#player_score_change = plr_state.player_trace.round_scores[-1]
#enemy_score_change = enemy_state.player_trace.round_scores[-1]
player_score = game_state_eval.players[self.id].score
enemy_score = game_state_eval.players[enemy_id].score
player_bonus = self.get_estimated_bonus(game_state_eval, plr_state, round_num)
opponent_bonus = self.get_estimated_bonus(game_state_eval, enemy_state, round_num)
return (player_score - enemy_score) + player_bonus - opponent_bonus + grid_tile_cnt_diff - tile_exist_diff
def get_action_threshold(self, moves):
action_threshold = 7
return action_threshold
def minimax(self, game_state, depth, alpha, beta, maximizing=True):
# check terminal state
is_terminal = False
for plr_state in game_state.players:
if plr_state.GetCompletedRows() > 0 :
is_terminal = True
break
# reached end of round but not end of game
is_round_end = False
if not is_terminal and game_state.TilesRemaining() == 0:
is_round_end = True
# base case
if depth == 0 or is_terminal or is_round_end :
V = self.evaluate(game_state)
return (None, V)
# maximizing player case
if maximizing:
value = -math.inf
moves = game_state.players[self.id].GetAvailableMoves(game_state)
best_move = moves[0]
move_dict = {}
plr_state = game_state.players[self.id]
action_threshold = self.get_action_threshold(moves)
#filtering some unplausible actions
if len(moves) > 7:
for move in moves:
if move[2].num_to_floor_line > 1 or move[2].pattern_line_dest == -1:
continue
tile_type = move[2].tile_type
p_dest = move[2].pattern_line_dest
num_to_line = move[2].num_to_pattern_line
floor = move[2].num_to_floor_line
remainder = self.get_remainder(plr_state, p_dest, num_to_line)
unnecessary = remainder + floor
numoffset = move[2].num_to_pattern_line - move[2].num_to_floor_line
if (tile_type, p_dest) not in move_dict or numoffset>move_dict[(tile_type, p_dest)][0]:
move_dict[(tile_type, p_dest)] = (numoffset, unnecessary, move)
moves = [v[2] for k, v in sorted(move_dict.items(), key=lambda item: item[1][1]) ][:action_threshold]
for move in moves:
game_state_copy = copy.deepcopy(game_state)
game_state_copy.ExecuteMove(self.id, move)
new_value = self.minimax(game_state_copy, depth-1, alpha, beta, False)[1]
if new_value > value:
value = new_value
best_move = move
alpha = max(alpha, value)
if alpha >= beta:
break
return best_move, value
# minimizing player case
else:
value = math.inf
moves = game_state.players[self.id*-1 + 1].GetAvailableMoves(game_state)
best_move = moves[0]
enemy_state = game_state.players[self.id*-1 + 1]
move_dict = {}
action_threshold = self.get_action_threshold(moves)
#filtering some unplausible actions
if len(moves) > 7:
for move in moves:
if move[2].num_to_floor_line > 1 or move[2].pattern_line_dest == -1:
continue
tile_type = move[2].tile_type
p_dest = move[2].pattern_line_dest
num_to_line = move[2].num_to_pattern_line
floor = move[2].num_to_floor_line
remainder = self.get_remainder(enemy_state, p_dest, num_to_line)
unnecessary = remainder + floor
numoffset = move[2].num_to_pattern_line - move[2].num_to_floor_line
if (tile_type, p_dest) not in move_dict or numoffset>move_dict[(tile_type, p_dest)][0]:
move_dict[(tile_type, p_dest)] = (numoffset, unnecessary, move)
moves = [v[2] for k, v in sorted(move_dict.items(), key=lambda item: item[1][1]) ][:action_threshold]
for move in moves:
game_state_copy = copy.deepcopy(game_state)
game_state_copy.ExecuteMove(self.id*-1 + 1, move)
new_value = self.minimax(game_state_copy, depth-1, alpha, beta, True)[1]
if new_value < value:
value = new_value
best_move = move
beta = min(beta, value)
if alpha >= beta:
break
return best_move , value
def SelectMove(self, moves, game_state):
plr_state = game_state.players[self.id]
depth = 4
if len(moves) >55:
depth = 3
elif len(moves) >10:
depth = 4
else :
depth = 5
move, minimax_score = self.minimax(game_state, depth, -math.inf, math.inf, True)
return move