-
-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathlora_utils.py
560 lines (464 loc) · 20.8 KB
/
lora_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
# https://github.com/bmaltais/kohya_ss
import hashlib
import math
import os
from collections import defaultdict
from io import BytesIO
from typing import List, Optional, Type, Union
import safetensors.torch
import torch
import torch.utils.checkpoint
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from safetensors.torch import load_file
from transformers import T5EncoderModel
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha))
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x, *args, **kwargs):
weight_dtype = x.dtype
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
lx = self.lora_down(x.to(self.lora_down.weight.dtype))
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded.to(weight_dtype) + lx.to(weight_dtype) * self.multiplier * scale
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
# Because writing user metadata to the file can change the result of
# sd_models.model_hash(), only retain the training metadata for purposes of
# calculating the hash, as they are meant to be immutable
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash
class LoRANetwork(torch.nn.Module):
TRANSFORMER_TARGET_REPLACE_MODULE = ["CogVideoXTransformer3DModel"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["T5LayerSelfAttention", "T5LayerFF", "BertEncoder"]
LORA_PREFIX_TRANSFORMER = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
def __init__(
self,
text_encoder: Union[List[T5EncoderModel], T5EncoderModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
module_class: Type[object] = LoRAModule,
add_lora_in_attn_temporal: bool = False,
varbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.dropout = dropout
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
print(f"neuron dropout: p={self.dropout}")
# create module instances
def create_modules(
is_unet: bool,
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_TRANSFORMER
if is_unet
else self.LORA_PREFIX_TEXT_ENCODER
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "LoRACompatibleLinear"
is_conv2d = child_module.__class__.__name__ == "Conv2d" or child_module.__class__.__name__ == "LoRACompatibleConv"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if not add_lora_in_attn_temporal:
if "attn_temporal" in child_name:
continue
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
if is_linear or is_conv2d_1x1:
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
)
loras.append(lora)
return loras, skipped
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
self.text_encoder_loras = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
if text_encoder is not None:
text_encoder_loras, skipped = create_modules(False, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, skipped_un = create_modules(True, unet, LoRANetwork.TRANSFORMER_TARGET_REPLACE_MODULE)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
text_encoder: Union[T5EncoderModel, List[T5EncoderModel]],
transformer,
neuron_dropout: Optional[float] = None,
add_lora_in_attn_temporal: bool = False,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
network = LoRANetwork(
text_encoder,
transformer,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
add_lora_in_attn_temporal=add_lora_in_attn_temporal,
varbose=True,
)
return network
def merge_lora(transformer, lora_path, multiplier, device='cpu', dtype=torch.float32, state_dict=None):
LORA_PREFIX_TRANSFORMER = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
if state_dict is None:
state_dict = load_file(lora_path, device=device)
else:
state_dict = state_dict
updates = defaultdict(dict)
for key, value in state_dict.items():
layer, elem = key.split('.', 1)
updates[layer][elem] = value
for layer, elems in updates.items():
# if "lora_te" in layer:
# if transformer_only:
# continue
# else:
# layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
# curr_layer = pipeline.text_encoder
#else:
layer_infos = layer.split(LORA_PREFIX_TRANSFORMER + "_")[-1].split("_")
curr_layer = transformer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(layer_infos) == 0:
print('Error loading layer')
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
weight_up = elems['lora_up.weight'].to(dtype).to(device)
weight_down = elems['lora_down.weight'].to(dtype).to(device)
if 'alpha' in elems.keys():
alpha = elems['alpha'].item() / weight_up.shape[1]
else:
alpha = 1.0
curr_layer.weight.data = curr_layer.weight.data.to(device)
try:
if len(weight_up.shape) == 4:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2)).unsqueeze(
2).unsqueeze(3)
else:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
except:
print(f"Could not apply LoRA weight in layer {layer}")
return transformer
# TODO: Refactor with merge_lora.
def unmerge_lora(pipeline, lora_path, multiplier=1, device="cpu", dtype=torch.float32):
"""Unmerge state_dict in LoRANetwork from the pipeline in diffusers."""
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
state_dict = load_file(lora_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
layer, elem = key.split('.', 1)
updates[layer][elem] = value
for layer, elems in updates.items():
if "lora_te" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.transformer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(layer_infos) == 0:
print('Error loading layer')
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
if 'alpha' in elems.keys():
alpha = elems['alpha'].item() / weight_up.shape[1]
else:
alpha = 1.0
curr_layer.weight.data = curr_layer.weight.data.to(device)
if len(weight_up.shape) == 4:
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
curr_layer.weight.data -= multiplier * alpha * torch.mm(weight_up, weight_down)
return pipeline
def load_lora_into_transformer(lora, transformer):
from peft import LoraConfig, set_peft_model_state_dict
from peft.mapping import PEFT_TYPE_TO_TUNER_MAPPING
from peft.tuners.tuners_utils import BaseTunerLayer
from diffusers.utils.peft_utils import get_peft_kwargs
from diffusers.utils.import_utils import is_peft_version
from diffusers.utils.state_dict_utils import convert_unet_state_dict_to_peft
state_dict_list = []
adapter_name_list = []
strength_list = []
lora_config_list = []
for l in lora:
state_dict = load_file(l["path"])
adapter_name_list.append(l["name"])
strength_list.append(l["strength"])
keys = list(state_dict.keys())
transformer_keys = [k for k in keys if k.startswith("transformer")]
state_dict = {
k.replace(f"transformer.", ""): v for k, v in state_dict.items() if k in transformer_keys
}
# check with first key if is not in peft format
first_key = next(iter(state_dict.keys()))
if "lora_A" not in first_key:
state_dict = convert_unet_state_dict_to_peft(state_dict)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
lora_config_kwargs.pop("use_dora")
lora_config_list.append(LoraConfig(**lora_config_kwargs))
state_dict_list.append(state_dict)
peft_models = []
for i in range(len(lora_config_list)):
tuner_cls = PEFT_TYPE_TO_TUNER_MAPPING[lora_config_list[i].peft_type]
peft_model = tuner_cls(transformer, lora_config_list[i], adapter_name=adapter_name_list[i])
incompatible_keys = set_peft_model_state_dict(peft_model.model, state_dict_list[i], adapter_name_list[i])
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
print(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
peft_models.append(peft_model)
if len(peft_models) > 1:
peft_models[0].add_weighted_adapter(
adapters=adapter_name_list,
weights=strength_list,
combination_type="linear",
adapter_name="combined_adapter"
)
peft_models[0].set_adapter("combined_adapter")
else:
if strength_list[0] != 1.0:
for module in transformer.modules():
if isinstance(module, BaseTunerLayer):
#print(f"Setting strength for {module}")
module.scale_layer(strength_list[0])
return peft_model.model