-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsimulateFER.cpp
79 lines (70 loc) · 2.82 KB
/
simulateFER.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*
* Copyright 2023 Sisi Miao, Communications Engineering Lab @ KIT
*
* SPDX-License-Identifier: MIT
*
* This file accompanies the paper
* S. Miao, A. Schnerring, H. Li and L. Schmalen,
* "Neural belief propagation decoding of quantum LDPC codes using overcomplete check matrices,"
* Proc. IEEE Inform. Theory Workshop (ITW), Saint-Malo, France, Apr. 2023, https://arxiv.org/abs/2212.10245
*/
#include "stabilizerCodes.h"
#include "helpers.h"
#include <iostream>
#include <omp.h>
int main(int argc, char *argv[]) {
unsigned n = 46;
unsigned k = 2;
unsigned m = 800;
int decIterNum = 6;
bool trained = true;
double ep0 = 0.1;
stabilizerCodesType codeType = stabilizerCodesType::GeneralizedBicycle;
fileReader matrix_supplier(n, k, m, codeType, trained);
matrix_supplier.check_symplectic();
constexpr int default_max_frame_errors = 300;
constexpr int default_max_decoded_words = 45000000;
// double ep_list[] =
// {0.14,0.13,0.12,0.11,0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,0.009,0.008,0.007,0.006,0.005};
const std::vector<double> default_ep_list{
0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,
};
const auto arguments =
helpers::parse_arguments(argc, argv, default_ep_list, default_max_frame_errors, default_max_decoded_words);
if (arguments.print_help) {
helpers::print_help(arguments.progname);
return 0;
}
const std::vector<double> &ep_list = std::move(arguments.epsilons);
const auto max_frame_errors = arguments.maximum_frame_errors;
const auto max_decoded_words = arguments.maximum_decoded_words;
std::cout << "% [[" << n << "," << k << +"]], " << m << " checks, " << decIterNum << " iter ";
if (trained)
std::cout << ",trained";
std::cout << "\n"
<< "% collect " << max_frame_errors << " frame errors or " << max_decoded_words
<< " decoded error patterns\n";
// omp_set_num_threads(1);
for (double epsilon : ep_list) {
double total_decoding = 0;
double failure = 0;
#pragma omp parallel
{
while (failure <= max_frame_errors && total_decoding <= max_decoded_words) {
stabilizerCodes code(n, k, m, codeType, matrix_supplier, trained);
code.add_error_given_epsilon(epsilon);
std::vector<bool> success;
success = code.decode(decIterNum, ep0);
#pragma omp critical
{
if (!success[1])
failure += 1;
total_decoding += 1;
}
}
}
std::cout << "% FE " << failure << ", total dec. " << total_decoding << "\\\\" << std::endl;
std::cout << epsilon << " " << (failure / total_decoding) << "\\\\" << std::endl;
}
return 0;
}