-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_Poly.v
582 lines (459 loc) · 16.4 KB
/
ex_Poly.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
(** * Poly: Polymorphism and Higher-Order Functions *)
Require Export Lists.
(** * Polymorphism *)
(** ** Polymorphic Lists *)
Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
Fixpoint length (X:Type) (l:list X) : nat :=
match l with
| nil => 0
| cons h t => S (length X t)
end.
Fixpoint app (X : Type) (l1 l2 : list X)
: (list X) :=
match l1 with
| nil => l2
| cons h t => cons X h (app X t l2)
end.
Fixpoint snoc (X:Type) (l:list X) (v:X) : (list X) :=
match l with
| nil => cons X v (nil X)
| cons h t => cons X h (snoc X t v)
end.
Fixpoint rev (X:Type) (l:list X) : list X :=
match l with
| nil => nil X
| cons h t => snoc X (rev X t) h
end.
Module MumbleBaz.
(** **** Exercise: 2 stars (mumble_grumble) *)
(** Consider the following two inductively defined types. *)
Inductive mumble : Type :=
| a : mumble
| b : mumble -> nat -> mumble
| c : mumble.
Inductive grumble (X:Type) : Type :=
| d : mumble -> grumble X
| e : X -> grumble X.
(** Which of the following are well-typed elements of [grumble X] for
some type [X]?
- [d (b a 5)]
- [d mumble (b a 5)]
- [d bool (b a 5)]
- [e bool true]
- [e mumble (b c 0)]
- [e bool (b c 0)]
- [c]
(* FILL IN HERE *)
[] *)
(* Check d (b a 5). (* type error *) *)
Check d mumble (b a 5). (* OK: grumble mumble *)
Check d bool (b a 5). (* OK: grumble bool *)
Check e bool true. (* OK: grumble bool *)
Check e mumble (b c 0). (* OK: grumble mumble *)
(* Check e bool (b c 0). (* type error *) *)
Check c. (* mumble *)
(** **** Exercise: 2 stars (baz_num_elts) *)
(** Consider the following inductive definition: *)
Inductive baz : Type :=
| x : baz -> baz
| y : baz -> bool -> baz.
(** How _many_ elements does the type [baz] have?
(* Zero. See http://cs.stackexchange.com/questions/29365/baz-num-elts-exercise-from-software-foundations *)
[] *)
End MumbleBaz.
(** *** Type Annotation Inference *)
(** *** Type Argument Synthesis *)
(** *** Implicit Arguments *)
Arguments nil {X}.
Arguments cons {X} _ _. (* use underscore for argument position that has no name *)
Arguments length {X} l.
Arguments app {X} l1 l2.
Arguments rev {X} l.
Arguments snoc {X} l v.
Notation "x :: y" := (cons x y)
(at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y []) ..).
Notation "x ++ y" := (app x y)
(at level 60, right associativity).
(** *** Exercises: Polymorphic Lists *)
(** **** Exercise: 2 stars, optional (poly_exercises) *)
(** Here are a few simple exercises, just like ones in the [Lists]
chapter, for practice with polymorphism. Fill in the definitions
and complete the proofs below. *)
Fixpoint repeat {X : Type} (n : X) (count : nat) : list X :=
match count with
| 0 => []
| S c' => cons n (repeat n c')
end.
Example test_repeat1:
repeat true 2 = cons true (cons true nil).
Proof. reflexivity. Qed.
Theorem nil_app : forall X : Type, forall l : list X,
app [] l = l.
Proof.
intros X l. reflexivity. Qed.
Theorem rev_snoc : forall X : Type,
forall v : X,
forall s : list X,
rev (snoc s v) = v :: (rev s).
Proof.
intros X v s. induction s as [| h t].
Case "s = []".
reflexivity.
Case "s = cons".
simpl. rewrite -> IHt. reflexivity.
Qed.
Theorem rev_involutive : forall X : Type, forall l : list X,
rev (rev l) = l.
Proof.
intros X l. induction l as [| h t].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite -> rev_snoc.
rewrite -> IHt. reflexivity.
Qed.
Theorem snoc_with_append : forall X : Type,
forall l1 l2 : list X,
forall v : X,
snoc (l1 ++ l2) v = l1 ++ (snoc l2 v).
Proof.
intros X l1 l2 v. induction l1 as [| h t].
Case "l1 = []".
reflexivity.
Case "l1 = cons".
simpl. rewrite -> IHt. reflexivity.
Qed.
(** ** Polymorphic Pairs *)
Inductive prod (X Y : Type) : Type :=
pair : X -> Y -> prod X Y.
Arguments pair {X} {Y} _ _.
Notation "( x , y )" := (pair x y).
Notation "X * Y" := (prod X Y) : type_scope.
Definition fst {X Y : Type} (p : X * Y) : X :=
match p with (x,y) => x end.
Definition snd {X Y : Type} (p : X * Y) : Y :=
match p with (x,y) => y end.
Fixpoint combine {X Y : Type} (lx : list X) (ly : list Y)
: list (X*Y) :=
match (lx,ly) with
| ([],_) => []
| (_,[]) => []
| (x::tx, y::ty) => (x,y) :: (combine tx ty)
end.
(** **** Exercise: 1 star, optional (combine_checks) *)
(** Try answering the following questions on paper and
checking your answers in coq:
- What is the type of [combine] (i.e., what does [Check
@combine] print?)
=> list X -> list Y -> list (X*Y)
- What does
Eval compute in (combine [1;2] [false;false;true;true]).
print?
=> [(1,false); (2,false)]
[]
*)
Check @combine.
(* => forall X Y : Type, list X -> list Y -> list (X * Y) *)
Eval compute in (combine [1;2] [false;false;true;true]).
(* = [(1, false); (2, false)] *)
(* : list (nat * bool) *)
(** **** Exercise: 2 stars (split) *)
(** The function [split] is the right inverse of combine: it takes a
list of pairs and returns a pair of lists. In many functional
programing languages, this function is called [unzip].
Uncomment the material below and fill in the definition of
[split]. Make sure it passes the given unit tests. *)
Fixpoint split
{X Y : Type} (l : list (X*Y))
: (list X) * (list Y) :=
match l with
| [] => ([],[])
| h :: t => match h with
| (x,y) => (x :: fst (split t), y :: snd (split t))
end
end.
Example test_split:
split [(1,false);(2,false)] = ([1;2],[false;false]).
Proof. reflexivity. Qed.
(** ** Polymorphic Options *)
Inductive option (X:Type) : Type :=
| Some : X -> option X
| None : option X.
Arguments Some {X} _.
Arguments None {X}.
Fixpoint index {X : Type} (n : nat)
(l : list X) : option X :=
match l with
| [] => None
| a :: l' => if beq_nat n O then Some a else index (pred n) l'
end.
(** **** Exercise: 1 star, optional (hd_opt_poly) *)
(** Complete the definition of a polymorphic version of the
[hd_opt] function from the last chapter. Be sure that it
passes the unit tests below. *)
Definition hd_opt {X : Type} (l : list X) : option X :=
match l with
| [] => None
| h :: t => Some h
end.
(** Once again, to force the implicit arguments to be explicit,
we can use [@] before the name of the function. *)
Check @hd_opt.
Example test_hd_opt1 : hd_opt [1;2] = Some 1.
Proof. reflexivity. Qed.
Example test_hd_opt2 : hd_opt [[1];[2]] = Some [1].
Proof. reflexivity. Qed.
(** * Functions as Data *)
(** ** Higher-Order Functions *)
Definition doit3times {X:Type} (f:X->X) (n:X) : X :=
f (f (f n)).
(** ** Partial Application *)
Definition plus3 := plus 3.
(** ** Digression: Currying *)
(** **** Exercise: 2 stars, advanced (currying) *)
(** In Coq, a function [f : A -> B -> C] really has the type [A
-> (B -> C)]. That is, if you give [f] a value of type [A], it
will give you function [f' : B -> C]. If you then give [f'] a
value of type [B], it will return a value of type [C]. This
allows for partial application, as in [plus3]. Processing a list
of arguments with functions that return functions is called
_currying_, in honor of the logician Haskell Curry.
Conversely, we can reinterpret the type [A -> B -> C] as [(A *
B) -> C]. This is called _uncurrying_. With an uncurried binary
function, both arguments must be given at once as a pair; there is
no partial application. *)
(** We can define currying as follows: *)
Definition prod_curry {X Y Z : Type}
(f : X * Y -> Z) (x : X) (y : Y) : Z := f (x, y).
(** As an exercise, define its inverse, [prod_uncurry]. Then prove
the theorems below to show that the two are inverses. *)
Definition prod_uncurry {X Y Z : Type}
(f : X -> Y -> Z) (p : X * Y) : Z :=
match p with (x,y) => f x y end.
(** (Thought exercise: before running these commands, can you
calculate the types of [prod_curry] and [prod_uncurry]?) *)
Check @prod_curry. (* forall X Y Z : Type, (X * Y -> Z) -> X -> Y -> Z *)
Check @prod_uncurry. (* forall X Y Z : Type, (X -> Y -> Z) -> X * Y -> Z *)
Theorem uncurry_curry : forall (X Y Z : Type) (f : X -> Y -> Z) x y,
prod_curry (prod_uncurry f) x y = f x y.
Proof.
intros X Y Z f x y. reflexivity. Qed.
Theorem curry_uncurry : forall (X Y Z : Type)
(f : (X * Y) -> Z) (p : X * Y),
prod_uncurry (prod_curry f) p = f p.
Proof.
intros X Y Z f p. destruct p as [n m].
reflexivity.
Qed.
(** ** Filter *)
Fixpoint filter {X:Type} (test: X->bool) (l:list X)
: (list X) :=
match l with
| [] => []
| h :: t => if test h then h :: (filter test t)
else filter test t
end.
Definition length_is_1 {X : Type} (l : list X) : bool :=
beq_nat (length l) 1.
(** ** Anonymous Functions *)
(** **** Exercise: 2 stars (filter_even_gt7) *)
(** Use [filter] (instead of [Fixpoint]) to write a Coq function
[filter_even_gt7] that takes a list of natural numbers as input
and returns a list of just those that are even and greater than
7. *)
Definition filter_even_gt7 (l : list nat) : list nat :=
filter (fun x => andb (evenb x) (negb (blt_nat x 7))) l.
Example test_filter_even_gt7_1 :
filter_even_gt7 [1;2;6;9;10;3;12;8;7] = [10;12;8].
Proof. reflexivity. Qed.
Example test_filter_even_gt7_2 :
filter_even_gt7 [5;2;6;19;129] = [].
Proof. reflexivity. Qed.
(** **** Exercise: 3 stars (partition) *)
(** Use [filter] to write a Coq function [partition]:
partition : forall X : Type,
(X -> bool) -> list X -> list X * list X
Given a set [X], a test function of type [X -> bool] and a [list
X], [partition] should return a pair of lists. The first member of
the pair is the sublist of the original list containing the
elements that satisfy the test, and the second is the sublist
containing those that fail the test. The order of elements in the
two sublists should be the same as their order in the original
list.
*)
Definition partition {X : Type} (test : X -> bool) (l : list X)
: list X * list X :=
( (filter (fun x => test x) l), (filter (fun x => negb (test x)) l) ).
Example test_partition1: partition oddb [1;2;3;4;5] = ([1;3;5], [2;4]).
Proof. reflexivity. Qed.
Example test_partition2: partition (fun x => false) [5;9;0] = ([], [5;9;0]).
Proof. reflexivity. Qed.
(** ** Map *)
Fixpoint map {X Y:Type} (f:X->Y) (l:list X)
: (list Y) :=
match l with
| [] => []
| h :: t => (f h) :: (map f t)
end.
(** ** Map for options *)
(** **** Exercise: 3 stars (map_rev) *)
(** Show that [map] and [rev] commute. You may need to define an
auxiliary lemma. *)
Lemma map_snoc : forall (X Y : Type) (f : X -> Y) (l : list X) (v : X),
map f (snoc l v) = snoc (map f l) (f v).
Proof.
intros X Y f l v. induction l as [| h t].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite IHt. reflexivity.
Qed.
Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),
map f (rev l) = rev (map f l).
Proof.
intros X Y f l. induction l as [| h t].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite <- IHt. rewrite map_snoc. reflexivity.
Qed.
(** **** Exercise: 2 stars (flat_map) *)
(** The function [map] maps a [list X] to a [list Y] using a function
of type [X -> Y]. We can define a similar function, [flat_map],
which maps a [list X] to a [list Y] using a function [f] of type
[X -> list Y]. Your definition should work by 'flattening' the
results of [f], like so:
flat_map (fun n => [n;n+1;n+2]) [1;5;10]
= [1; 2; 3; 5; 6; 7; 10; 11; 12].
*)
Fixpoint flat_map {X Y : Type} (f : X -> list Y) (l : list X)
: (list Y) :=
match l with
| [] => []
| h :: t => app (f h) (flat_map f t)
end.
Example test_flat_map1:
flat_map (fun n => [n;n;n]) [1;5;4]
= [1; 1; 1; 5; 5; 5; 4; 4; 4].
Proof. reflexivity. Qed.
Definition option_map {X Y : Type} (f : X -> Y) (xo : option X)
: option Y :=
match xo with
| None => None
| Some x => Some (f x)
end.
(** **** Exercise: 2 stars, optional (implicit_args) *)
(** The definitions and uses of [filter] and [map] use implicit
arguments in many places. Replace the curly braces around the
implicit arguments with parentheses, and then fill in explicit
type parameters where necessary and use Coq to check that you've
done so correctly. (This exercise is not to be turned in; it is
probably easiest to do it on a _copy_ of this file that you can
throw away afterwards.) [] *)
Module Ex_implicit_args.
Fixpoint map_explicit (X Y : Type) (f : X->Y) (l : list X)
: (list Y) :=
match l with
| [] => []
| h :: t => (f h) :: (map_explicit X Y f t)
end.
Fixpoint filter_explicit (X:Type) (test: X->bool) (l:list X)
: (list X) :=
match l with
| [] => []
| h :: t => if test h then h :: (filter_explicit X test t)
else filter_explicit X test t
end.
End Ex_implicit_args.
(** ** Fold *)
Fixpoint fold {X Y:Type} (f: X->Y->Y) (l:list X) (b:Y) : Y :=
match l with
| nil => b
| h :: t => f h (fold f t b)
end.
(** **** Exercise: 1 star, advanced (fold_types_different) *)
(** Observe that the type of [fold] is parameterized by _two_ type
variables, [X] and [Y], and the parameter [f] is a binary operator
that takes an [X] and a [Y] and returns a [Y]. Can you think of a
situation where it would be useful for [X] and [Y] to be
different? *)
(* For example, let X be nam and Y be bool. The setting is useful for detecting some exceptional numbers. *)
(** ** Functions For Constructing Functions *)
Definition constfun {X: Type} (x: X) : nat->X :=
fun (k:nat) => x.
Definition ftrue := constfun true.
Definition override {X: Type} (f: nat->X) (k:nat) (x:X) : nat->X:=
fun (k':nat) => if beq_nat k k' then x else f k'.
Definition fmostlytrue := override (override ftrue 1 false) 3 false.
(** **** Exercise: 1 star (override_example) *)
(** Before starting to work on the following proof, make sure you
understand exactly what the theorem is saying and can paraphrase
it in your own words. The proof itself is straightforward. *)
Theorem override_example : forall (b:bool),
(override (constfun b) 3 true) 2 = b.
Proof.
intros b. reflexivity. Qed.
(* The input 2 is not equal to 3, so the override returns (constfun b) 2.
It's just b by definition of constfun. *)
(** [] *)
(** * The [unfold] Tactic *)
Theorem override_eq : forall {X:Type} x k (f:nat->X),
(override f k x) k = x.
Proof.
intros X x k f.
unfold override.
rewrite <- beq_nat_refl.
reflexivity. Qed.
(** **** Exercise: 2 stars (override_neq) *)
Theorem override_neq : forall (X : Type) x1 x2 k1 k2 (f : nat -> X),
f k1 = x1 ->
beq_nat k2 k1 = false ->
(override f k2 x2) k1 = x1.
Proof.
intros X x1 x2 k1 k2 f H1 H2.
unfold override.
rewrite H2.
rewrite H1. reflexivity.
Qed.
(** * Additional Exercises *)
(** **** Exercise: 2 stars (fold_length) *)
(** Many common functions on lists can be implemented in terms of
[fold]. For example, here is an alternative definition of [length]: *)
Definition fold_length {X : Type} (l : list X) : nat :=
fold (fun _ n => S n) l 0.
Example test_fold_length1 : fold_length [4;7;0] = 3.
Proof. reflexivity. Qed.
(** Prove the correctness of [fold_length]. *)
Theorem fold_length_correct : forall X (l : list X),
fold_length l = length l.
Proof.
intros X l.
unfold fold_length.
induction l as [| h t].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite IHt. reflexivity.
Qed.
(** **** Exercise: 3 stars (fold_map) *)
(** We can also define [map] in terms of [fold]. Finish [fold_map]
below. *)
Definition fold_map {X Y : Type} (f : X -> Y) (l : list X) : list Y :=
fold (fun a l' => f a :: l') l [].
(** Write down a theorem in Coq stating that [fold_map] is correct,
and prove it. *)
Theorem fold_map_correct : forall (X Y : Type) (f : X -> Y) (l : list X),
fold_map f l = map f l.
Proof.
intros X Y f l.
unfold fold_map.
induction l as [| h t].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite IHt. reflexivity.
Qed.