-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
504 lines (429 loc) · 16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import argparse
import glob
import json
import os
import random
import re
from importlib import import_module
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb
from datasets.coco import CocoDetectionCP
from datasets.dataset import (
CustomDataLoader,
collate_fn,
cp_collate_fn,
train_augmix_transform,
train_copypaste_transform,
)
from datasets.transform_test import create_transforms
from loss.losses import create_criterion
from optimizer.optim_sche import get_opt_sche
from utils.utils import add_hist, grid_image, label_accuracy_score
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group["lr"]
def increment_path(path, exist_ok=False):
"""Automatically increment path, i.e. runs/exp --> runs/exp0, runs/exp1 etc.
Args:
path (str or pathlib.Path): f"{model_dir}/{args.name}".
exist_ok (bool): whether increment path (increment if False).
"""
path = Path(path)
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def createDirectory(save_dir):
try:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
except OSError:
print("Error: Failed to create the directory.")
def train(model_dir, args):
seed_everything(args.seed)
save_dir = increment_path(os.path.join(model_dir, args.name))
createDirectory(save_dir)
# settings
print("pytorch version: {}".format(torch.__version__))
print("GPU 사용 가능 여부: {}".format(torch.cuda.is_available()))
print(torch.cuda.get_device_name(0))
print(torch.cuda.device_count())
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# dataset
from datasets.dataset import train_transform, val_transform
val_dataset = CustomDataLoader(
data_dir=args.val_path, mode="val", transform=val_transform
)
if args.aug_option == "augmix":
train_dataset = CustomDataLoader(
data_dir=args.train_path, mode="train", transform=train_augmix_transform
)
collate_fn_func = collate_fn
elif args.aug_option == "copy_paste":
train_dataset = CocoDetectionCP(
args.train_copypaste_path, # image root path
args.train_path, # annfile
train_copypaste_transform,
)
collate_fn_func = cp_collate_fn
elif args.aug_option == "transunet":
custom = create_transforms(args.aug_option, args.seed)
train_transform = custom.transform_img()
val_transform = custom.val_transform_img()
train_dataset = CustomDataLoader(
data_dir=args.train_path, mode="train", transform=train_transform
)
collate_fn_func = collate_fn
else:
train_dataset = CustomDataLoader(
data_dir=args.train_path, mode="train", transform=train_transform
)
collate_fn_func = collate_fn
# data_loader
train_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=True,
pin_memory=use_cuda,
collate_fn=collate_fn_func,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=False,
pin_memory=use_cuda,
collate_fn=collate_fn,
drop_last=True,
)
# model
n_classes = 11
model_module = getattr(import_module("models.model"), args.model)
model = model_module(num_classes=n_classes, pretrained=True)
if args.wandb == True:
wandb.watch(model)
# loss & optimizer
criterion = create_criterion(args.criterion)
# optimizer & scheduler
optimizer, scheduler = get_opt_sche(args, model)
with open(os.path.join(save_dir, "config.json"), "w", encoding="utf-8") as f:
json.dump(vars(args), f, ensure_ascii=False, indent=4)
# start train
category_names = [
"Background",
"General trash",
"Paper",
"Paper pack",
"Metal",
"Glass",
"Plastic",
"Styrofoam",
"Plastic bag",
"Battery",
"Clothing",
]
best_val_mIoU = 0
step = 0
for epoch in range(args.epochs):
print(f"Start training..")
# train loop
model.train()
hist = np.zeros((n_classes, n_classes))
for i, (images, masks) in enumerate(train_loader):
images = torch.stack(images)
masks = torch.stack(masks).long()
# gpu device 할당
images, masks = images.to(device), masks.to(device)
model = model.to(device)
# inference
if args.model in (
"FCNRes50",
"FCNRes101",
"DeepLabV3_Res50",
"DeepLabV3_Res101",
):
outputs = model(images)["out"]
else:
outputs = model(images)
# calculate loss
if args.model in ("OCRNet", "MscaleOCRNet"):
if args.criterion == "ohem_cross_entropy":
aux_loss = criterion(outputs["aux"], masks)
main_loss = criterion(outputs["pred"], masks)
else:
aux_loss = criterion(outputs["aux"], masks, do_rmi=False)
main_loss = criterion(outputs["pred"], masks, do_rmi=True)
loss = 0.4 * aux_loss + main_loss
outputs = torch.argmax(outputs["pred"], dim=1).detach().cpu().numpy()
elif args.model in ("TransUnet"):
loss = model.get_loss(outputs, masks)
outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()
else:
loss = criterion(outputs, masks)
outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 데이터 검증
masks = masks.detach().cpu().numpy()
hist = add_hist(hist, masks, outputs, n_class=n_classes)
acc, acc_cls, mIoU, fwavacc, IoU = label_accuracy_score(hist)
# step 주기에 따른 loss 출력
if (i + 1) % args.log_interval == 0:
current_lr = get_lr(optimizer)
print(
f"Epoch[{epoch+1}/{args.epochs}] Step [{i+1}/{len(train_loader)}] || "
f"training loss {round(loss.item(),4)} || mIoU {round(mIoU,4)} || lr {current_lr}"
)
# wandb log
if args.wandb == True:
wandb.log(
{
# "Media/train predict images": figure,
"Train/Train loss": round(loss.item(), 4),
"Train/Train mIoU": round(mIoU.item(), 4),
"Train/Train acc": round(acc.item(), 4),
"learning_rate": current_lr,
},
step=step,
)
step += 1
# val loop
with torch.no_grad():
print("Calculating validation results...")
model.eval()
total_loss = 0
cnt = 0
figure = None
hist = np.zeros((n_classes, n_classes))
for images, masks in tqdm(val_loader, leave=False):
images = torch.stack(images)
masks = torch.stack(masks).long()
# gpu device 할당
images, masks = images.to(device), masks.to(device)
model = model.to(device)
# inference
if args.model in (
"FCNRes50",
"FCNRes101",
"DeepLabV3_Res50",
"DeepLabV3_Res101",
):
outputs = model(images)["out"]
else:
outputs = model(images)
# calculate loss
if args.model in ("OCRNet", "MscaleOCRNet"):
aux_loss = criterion(outputs["aux"], masks, do_rmi=False)
main_loss = criterion(outputs["pred"], masks, do_rmi=False)
loss = 0.4 * aux_loss + main_loss
loss = loss.mean()
outputs = (
torch.argmax(outputs["pred"], dim=1).detach().cpu().numpy()
)
elif args.model in ("TransUnet"):
loss = model.get_loss(outputs, masks)
outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()
else:
loss = criterion(outputs, masks)
outputs = torch.argmax(outputs, dim=1).detach().cpu().numpy()
total_loss += loss
cnt += 1
masks = masks.detach().cpu().numpy()
hist = add_hist(hist, masks, outputs, n_class=n_classes)
if figure is None:
figure = grid_image(
images.detach().cpu().permute(0, 2, 3, 1).numpy(),
masks,
outputs,
)
acc, acc_cls, mIoU, fwavacc, IoU = label_accuracy_score(hist)
IoU_by_class = [
{classes: round(IoU, 4)} for IoU, classes in zip(IoU, category_names)
]
avg_loss = total_loss / cnt
print(
f"[Val] Average Loss : {round(avg_loss.item(), 4)}, Accuracy : {round(acc, 4)} || "
f"mIoU : {round(mIoU, 4)}, IoU by class : {IoU_by_class}"
)
# save best model
if mIoU > best_val_mIoU:
best_val_mIoU = mIoU
print(f"Best performance {best_val_mIoU} at Epoch {epoch+1}")
torch.save(model.state_dict(), f"{save_dir}/best.pt")
print(f"Save best model in {save_dir}")
torch.save(model.state_dict(), f"{save_dir}/last.pt")
# wandb log
if args.wandb == True:
wandb.log(
{
"Media/predict images": figure,
"Valid/Valid loss": round(avg_loss.item(), 4),
"Valid/Valid mIoU": round(mIoU, 4),
"Valid/Valid acc": round(acc, 4),
"Metric/Background_IoU": IoU_by_class[0]["Background"],
"Metric/General_trash_IoU": IoU_by_class[1]["General trash"],
"Metric/Paper_IoU": IoU_by_class[2]["Paper"],
"Metric/Paper_pack_IoU": IoU_by_class[3]["Paper pack"],
"Metric/Metal_IoU": IoU_by_class[4]["Metal"],
"Metric/Glass_IoU": IoU_by_class[5]["Glass"],
"Metric/Plastic_IoU": IoU_by_class[6]["Plastic"],
"Metric/Styrofoam_IoU": IoU_by_class[7]["Styrofoam"],
"Metric/Plastic_bag_IoU": IoU_by_class[8]["Plastic bag"],
"Metric/Battery_IoU": IoU_by_class[9]["Battery"],
"Metric/Clothing_IoU": IoU_by_class[10]["Clothing"],
},
step=step,
)
print()
scheduler.step()
def check_args(args):
if (args.model in ("OCRNet", "MscaleOCRNet")) & (
args.criterion in ("cross_entropy")
):
raise Exception(
f"not match error model and criterion. {args.model}, {args.criterion}"
)
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed", type=int, default=1004, help="random seed (default: 1004)"
)
parser.add_argument(
"--epochs", type=int, default=10, help="number of epochs to train (default: 10)"
)
parser.add_argument(
"--batch_size",
type=int,
default=2,
help="input batch size for training (default: 2)",
)
parser.add_argument(
"--workers",
type=int,
default=1,
help="number of workers for training (default: 1)",
)
parser.add_argument(
"--model", type=str, default="FCNRes50", help="model type (default: FCNRes50)"
)
parser.add_argument(
"--lr", type=float, default=1e-4, help="learning rate (default: 1e-4)"
)
parser.add_argument(
"--criterion",
type=str,
default="cross_entropy",
help="criterion type (default: cross_entropy)",
)
parser.add_argument(
"--log_interval",
type=int,
default=20,
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--name", default="exp", help="model save at {SM_MODEL_DIR}/{name}"
)
parser.add_argument(
"--aug_option", default=False, help="option for custom transform function"
)
parser.add_argument(
"--schedule", default=False, help="option for scheduler function"
)
# optimizer & scheduler
parser.add_argument(
"--optimizer", type=str, default="adam", help="optimizer type (default: adam)"
)
parser.add_argument(
"--weight_decay", type=float, default=1e-5, help="weight decay (default: 1e-5)"
)
parser.add_argument(
"--momentum", type=float, default=0.9, help="momentum (default: 0.9)"
)
parser.add_argument("--amsgrad", action="store_true", help="amsgrad for adam")
parser.add_argument(
"--scheduler",
type=str,
default="lambda",
help="scheduler type (default: lambda)",
)
parser.add_argument(
"--poly_exp",
type=float,
default=1.0,
help="polynomial LR exponent (default: 1.0)",
)
parser.add_argument(
"--T_max", type=int, default=10, help="cosineannealing T_max (default: 10)"
)
parser.add_argument(
"--eta_min", type=int, default=0, help="cosineannealing eta_min (default: 0)"
)
parser.add_argument(
"--step_size", type=int, default=10, help="stepLR step_size (default: 10)"
)
parser.add_argument(
"--gamma", type=float, default=0.1, help="stepLR gamma (default: 0.1)"
)
# Container environment
parser.add_argument(
"--train_path",
type=str,
default=os.environ.get("SM_CHANNEL_TRAIN", "./sample_data/train.json"),
)
parser.add_argument(
"--val_path",
type=str,
default=os.environ.get("SM_CHANNEL_VAL", "./sample_data/val.json"),
)
parser.add_argument(
"--model_dir", type=str, default=os.environ.get("SM_MODEL_DIR", "./runs")
)
# wandb
parser.add_argument("--wandb", action="store_true", help="wandb implement or not")
parser.add_argument(
"--entity",
type=str,
default="cider6",
help="wandb entity name (default: cider6)",
)
parser.add_argument(
"--project", type=str, default="test", help="wandb project name (default: test)"
)
# copy paste
parser.add_argument(
"--train_copypaste_path",
type=str,
default=os.environ.get("SM_CHANNEL_TRAIN", "./sample_data"),
)
args = parser.parse_args()
check_args(args)
print(args)
# wandb init
if args.wandb == True:
wandb.init(entity=args.entity, project=args.project)
wandb.run.name = args.name
wandb.config.update(args)
model_dir = args.model_dir
train(model_dir, args)