-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhubconf.py
41 lines (33 loc) · 1.19 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Define dependencies
dependencies = ['torch']
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.hub import load_state_dict_from_url
# Dictionary point to the URL of the models
models_url = {
'fake_model': 'https://github.com/kodekloudhub/PyTorch/raw/refs/heads/main/section_3/demos/030-105-additional-training-methods/model_state_dict.pt'
}
# Model Class
class FakeNet(nn.Module):
def __init__(self):
super(FakeNet, self).__init__()
self.fc1 = nn.Linear(10, 50)
self.batch_norm = nn.BatchNorm1d(50)
self.fc2 = nn.Linear(50, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.batch_norm(x)
x = self.fc2(x)
return x
# Entrypoint to our fake_model
def fake_model(pretrained = False, **kwargs):
"""
FakeNet model
pretrained (bool): kwargs, load pretrained weights into the model
"""
model = FakeNet(**kwargs)
# If pretrained is true then load the parameters from the url
if pretrained:
model.load_state_dict(torch.hub.load_state_dict_from_url(models_url['fake_model'], progress=True))
return model