-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
28 lines (24 loc) · 1000 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from torch import nn
from transformers import DistilBertModel
class DistilBertForSequenceClassification(nn.Module):
def __init__(self, config, num_labels=2):
super(DistilBertForSequenceClassification, self).__init__()
self.num_labels = num_labels
self.config = config
self.bert = DistilBertModel.from_pretrained(
'distilbert-base-uncased',
output_hidden_states=False
)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, num_labels)
nn.init.xavier_normal_(self.classifier.weight)
def forward(self, input_ids, token_type_ids=None, attention_mask=None):
last_hidden = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)
pooled_output = torch.mean(last_hidden[0], dim=1)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits