-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSERI.py
139 lines (121 loc) · 4.78 KB
/
SERI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
from scipy.integrate import odeint
import pandas as pd
from datetime import datetime
def dict2list(dist):
df = pd.DataFrame(dist).fillna('null')
return df.values.tolist()
def SEIR(inivalue, _, beta1, beta2, gamma, sigma, r, N):
"""
simple SEIR model.
:param inivalue: X
:param _: any
:param beta1: 感染者传染给易感者的概率
:param beta2: 潜伏者感染易感者的概率
:param gamma: 康复概率
:param sigma: 潜伏者转化为感染者的概率
:param r: 每天接触的人数
:param N: 总人口
:return: S(易感人群) E(潜伏期) R(康复者) I(患者) 数量
"""
X = inivalue
Y = np.zeros(4)
# S数量
Y[0] = - (r * beta1 * X[0] * X[2]) / N - (r * beta2 * X[0] * X[1]) / N
# E数量
Y[1] = (r * beta1 * X[0] * X[2]) / N + (r * beta2 * X[0] * X[1]) / N - sigma * X[1]
# I数量
Y[2] = sigma * X[1] - gamma * X[2]
# R数量
Y[3] = gamma * X[2]
return Y
def process(T, E, I, R, N=1400000000, r=2, sigma=1 / 14, immune_people=0):
"""
:param T: 传染时间
:param E: 潜伏期
:param I: 患者
:param R: 康复者
:param N: 总人口
:param r: 每天接触的人数
:param sigma: 潜伏者转化为感染者的概率
:param immune_people: 接收疫苗人数
:return: S(易感人群) E(潜伏期) R(康复者) I(患者) 数量
"""
S = N - I - R - immune_people
R = R + immune_people
beta1 = 0.02 # 真实数据拟合得出
beta2 = 0.021 / 3 # 0.007
# r2 * beta2 = 2
# sigma = 1 / 14 # 1/14, 潜伏期的倒数
gamma = 1 / 7 # 1/7, 感染期的倒数
prem = [S, E, I, R]
Res = odeint(SEIR, prem, np.arange(0, T + 1), args=(beta1, beta2, gamma, sigma, r, N))
S = Res[:, 0]
E = Res[:, 1]
I = Res[:, 2]
R = Res[:, 3]
return S, E, I, R
def draw_little_elephant(r1, r2, population, inflect=1):
"""
各城市接触人数测试函数
"""
t0_range = 23
S1, E1, I1, R1 = process(t0_range, r=r1, N=population, E=0, I=inflect, R=0, sigma=1 / 14)
S2, E2, I2, R2 = process(165, r=r2, N=population, E=E1[t0_range], I=I1[t0_range], R=R1[t0_range], sigma=1 / 4)
temp1 = [R1[i] + I1[i] for i in range(len(R1))]
temp2 = [R2[i] + I2[i] for i in range(len(R2))]
return temp1 + temp2[1:]
def draw_mid_elephant(r1, r2, r3, population, inflect=1):
t0_range = 23
t1_range = 10
t2_range = 154
S1, E1, I1, R1 = process(t0_range, r=r1, N=population, E=0, I=inflect, R=0, sigma=1 / 14)
S2, E2, I2, R2 = process(t1_range, r=r2, N=population, E=E1[t0_range], I=I1[t0_range], R=R1[t0_range], sigma=1 / 4)
S3, E3, I3, R3 = process(t2_range, r=r3, N=population, E=E2[t1_range], I=I2[t1_range], R=R2[t1_range], sigma=1 / 4)
temp1 = [R1[i] + I1[i] for i in range(len(R1))]
temp2 = [R2[i] + I2[i] for i in range(len(R2))]
temp3 = [R3[i] + I3[i] for i in range(len(R3))]
print(len(temp1), len(temp2), len(temp3))
return temp1 + temp2[1:] + temp3[1:]
def draw_elephant(regulation_vaccine, population, r0):
"""
:param regulation_vaccine: [[开始时间, 结束时间, r, num_vaccine], ...]
:param population: 区域总人口
:param r0: 初始接触人数
:return: 传染人数队列
"""
S_ = [0 for i in range(len(regulation_vaccine) + 1)]
E_ = [0 for i in range(len(regulation_vaccine) + 1)]
I_ = [0 for i in range(len(regulation_vaccine) + 1)]
R_ = [0 for i in range(len(regulation_vaccine) + 1)]
t0 = datetime(int(regulation_vaccine[0][0].split('-')[0]), int(regulation_vaccine[0][0].split('-')[1]),
int(regulation_vaccine[0][0].split('-')[2])) - datetime(2020, 1, 5)
t0 = abs(t0.days)
S_[0], E_[0], I_[0], R_[0] = process(t0, r=r0, E=0, I=1, R=0, sigma=1 / 14, N=population)
# num_regulation = len(regulation)
# date_list = []
N = population
cnt = 0
for i in regulation_vaccine:
delta_time = datetime(int(i[0].split('-')[0]), int(i[0].split('-')[1]),
int(i[0].split('-')[2])) - datetime(
int(i[1].split('-')[0]),
int(i[1].split('-')[1]),
int(i[1].split('-')[2]))
delta_time = abs(delta_time.days)
r = r0 * float(i[2])
N = N - float(i[3])
S_[cnt + 1], E_[cnt + 1], I_[cnt + 1], R_[cnt + 1] = process(delta_time, r=r, E=E_[cnt][-1], I=I_[cnt][-1],
R=R_[cnt][-1], sigma=1 / 4, N=N)
cnt = cnt + 1
result = []
for i in range(len(S_)):
result.append(I_[i] + R_[i])
result_seq = []
for i in range(len(result)):
if i == 0:
result_seq += [k for k in result[i]]
else:
result_seq += [k for k in result[i][1:]]
assert len(result_seq) == 189
return result_seq