-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_dknn.py
339 lines (288 loc) · 12.5 KB
/
run_dknn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
import os
import json
import argparse
from tqdm import tqdm
from collections import Counter
import numpy as np
import cupy as cp
import chainer
import chainer.functions as F
from nearpy import Engine
from nearpy.hashes import RandomBinaryProjectionTree
from sklearn.neighbors import KDTree
from nlp_utils import convert_seq, convert_snli_seq
from utils import setup_model
'''contains all of the code to run Deep K Nearest Neighbors
for any model'''
class DkNN:
def __init__(self, model, lsh=False):
self.model = model
self.n_dknn_layers = self.model.n_dknn_layers
self.tree_list = None
self.label_list = None
self._A = None
self.lsh = lsh
'''builds the nearest neighbor lookup data structures for all of the training
data'''
def build(self, train, batch_size=64, converter=convert_seq, device=0):
train_iter = chainer.iterators.SerialIterator(
train, batch_size, repeat=False)
train_iter.reset()
act_list = [[] for _ in range(self.n_dknn_layers)]
label_list = []
print('caching hiddens')
n_batches = len(train) // batch_size
for i, train_batch in enumerate(tqdm(train_iter, total=n_batches)):
data = converter(train_batch, device=device, with_label=True)
text = data['xs']
labels = data['ys']
with chainer.using_config('train', False):
_, dknn_layers = self.model.predict(text, dknn=True)
assert len(dknn_layers) == self.model.n_dknn_layers
for i in range(self.n_dknn_layers):
layer = dknn_layers[i]
layer.to_cpu()
act_list[i] += [x for x in layer.data]
label_list.extend([int(x) for x in labels])
self.act_list = act_list
self.label_list = label_list
if self.lsh:
print('using Locally Sensitive Hashing for NN Search')
else:
print('using KDTree for NN Search')
self.tree_list = [] # one lookup tree for each dknn layer
for i in range(self.n_dknn_layers):
print('building tree for layer {}'.format(i))
if self.lsh: # if lsh
n_hidden = act_list[i][0].shape[0]
rbpt = RandomBinaryProjectionTree('rbpt', 75, 75)
tree = Engine(n_hidden, lshashes=[rbpt])
for j, example in enumerate(tqdm(act_list[i])):
assert example.ndim == 1
assert example.shape[0] == n_hidden
tree.store_vector(example, j)
else: # if kdtree
tree = KDTree(act_list[i])
self.tree_list.append(tree)
'''calibrates the model using a small heldout set'''
def calibrate(self, data, batch_size=64, converter=convert_seq, device=0):
data_iter = chainer.iterators.SerialIterator(
data, batch_size, repeat=False)
data_iter.reset()
print('calibrating credibility')
self._A = []
n_batches = len(data) // batch_size
for i, batch in enumerate(tqdm(data_iter, total=n_batches)):
batch = converter(batch, device=device, with_label=True)
labels = [int(x) for x in batch['ys']]
_, knn_logits = self(batch['xs'])
for j, _ in enumerate(batch['xs']):
cnt_all = len(knn_logits[j])
preds = dict(Counter(knn_logits[j]).most_common())
cnt_y = preds.get(labels[j], 0)
self._A.append(cnt_y / cnt_all)
'''returns what percent of the nearest neighbors are the
same after changing the input from x to new_x'''
def get_neighbor_change(self, new_x, x):
full_length_neighbors = self.get_neighbors(x)
l10_neighbors = self.get_neighbors(new_x)
overlap = 0.0
for i in l10_neighbors:
if i in full_length_neighbors:
overlap = overlap + 1
return overlap / len(l10_neighbors)
'''return the distance to the nearest neighbor on the last layer'''
def get_nearest_distance(self, xs, layer_id=-1):
assert self.tree_list is not None
assert self.label_list is not None
with chainer.using_config('train', False):
reg_logits, dknn_layers = self.model.predict(
xs, softmax=True, dknn=True)
layer = dknn_layers[layer_id]
layer.to_cpu()
layer = [x for x in layer.data]
neighbors, distances = [], []
for hidden in layer:
if self.lsh: # use lsh
knn = self.tree_list[layer_id].neighbours(hidden)
for nn, dis in knn:
neighbors.append(nn)
distances.append(dis)
else: # use kdtree
dis, nn = self.tree_list[layer_id].query([hidden], k=1)
neighbors.append(nn[0][0])
distances.append(dis[0][0])
return distances
''' returns the indices of the nearest neighbors according
to their position in the training data'''
def get_neighbors(self, xs):
assert self.tree_list is not None
assert self.label_list is not None
with chainer.using_config('train', False):
reg_logits, dknn_layers = self.model.predict(
xs, softmax=True, dknn=True)
_dknn_layers = []
for layer in dknn_layers:
layer.to_cpu()
_dknn_layers.append([x for x in layer.data])
# n_examples * n_layers
dknn_layers = list(map(list, zip(*_dknn_layers)))
for i, example_layers in enumerate(dknn_layers):
# go through examples in the batch
neighbors = []
for layer_id, hidden in enumerate(example_layers):
# go through layers and get neighbors for each
if self.lsh: # use lsh
knn = self.tree_list[layer_id].neighbours(hidden)
for nn in knn:
neighbors.append(nn[1])
else: # use kdtree
_, knn = self.tree_list[layer_id].query([hidden], k=75)
# FIXME This is the setting where you only take the last
# layer
neighbors = knn[0]
return neighbors
'''forward pass of model for standard inference and dknn'''
def __call__(self, xs):
assert self.tree_list is not None
assert self.label_list is not None
with chainer.using_config('train', False):
reg_logits, dknn_layers = self.model.predict(
xs, softmax=True, dknn=True)
_dknn_layers = []
for layer in dknn_layers:
layer.to_cpu()
_dknn_layers.append([x for x in layer.data])
# n_examples * n_layers
dknn_layers = list(map(list, zip(*_dknn_layers)))
knn_logits = []
for i, example_layers in enumerate(dknn_layers):
# go through examples in the batch
neighbors = []
for layer_id, hidden in enumerate(example_layers):
# go through layers and get neighbors for each
if self.lsh: # use lsh
knn = self.tree_list[layer_id].neighbours(hidden)
for nn in knn:
neighbors.append(nn[1])
else: # use kdtree
_, knn = self.tree_list[layer_id].query([hidden], k=75)
neighbors = knn[0]
neighbor_labels = []
for idx in neighbors: # for all indices, get their label
neighbor_labels.append(self.label_list[idx])
knn_logits .append(neighbor_labels)
return reg_logits, knn_logits
''' returns credibility for a certain class ys'''
def get_credibility(self, xs, ys, calibrated=False, use_snli=False):
assert self.tree_list is not None
assert self.label_list is not None
batch_size = len(xs)
if use_snli:
batch_size = len(xs[0])
_, knn_logits = self(xs)
ys = [int(y) for y in ys]
knn_cred = []
for i in range(batch_size):
cnt_all = len(knn_logits[i])
cnts = dict(Counter(knn_logits[i]).most_common())
p_1 = cnts.get(ys[i], 0) / cnt_all
knn_cred.append(p_1)
if calibrated and self._A is not None:
for i, p_1 in enumerate(knn_cred):
cnt_less = len([x for x in self._A if x < p_1])
knn_cred[i] = cnt_less / len(self._A)
return knn_cred
'''returns confidence for standard prediction'''
def get_regular_confidence(self, xs, ys=None, snli=False):
reg_logits, knn_logits = self(xs)
reg_logits = cp.asnumpy(reg_logits)
if ys is None:
reg_conf = np.max(reg_logits, axis=1)
else:
batch_size = reg_logits.shape[0]
ys = np.array([int(y) for y in ys], dtype=np.int32)
reg_conf = reg_logits[np.arange(batch_size), ys]
return reg_conf
'''predicts using normal inference and dknn. Retrieves the nearest neighbor
hidden states, and returns the class with the highest number of nearest
neighbors
'''
def predict(self, xs, calibrated=False, snli=False):
assert self.tree_list is not None
assert self.label_list is not None
batch_size = len(xs)
if snli:
batch_size = len(xs[0])
reg_logits, knn_logits = self(xs)
reg_pred = F.argmax(reg_logits, 1).data.tolist()
reg_conf = F.max(reg_logits, 1).data.tolist()
knn_pred, knn_cred, knn_conf = [], [], []
for i in range(batch_size):
cnt_all = len(knn_logits[i])
cnts = Counter(knn_logits[i]).most_common()
label, cnt_1st = cnts[0]
if len(cnts) > 1:
_, cnt_2nd = cnts[1]
else:
cnt_2nd = 0
p_1 = cnt_1st / cnt_all
p_2 = cnt_2nd / cnt_all
if calibrated and self._A is not None:
p_1 = len([x for x in self._A if x >= p_1]) / len(self._A)
p_2 = len([x for x in self._A if x >= p_2]) / len(self._A)
knn_pred.append(label)
knn_cred.append(p_1)
knn_conf.append(1 - p_2)
return knn_pred, knn_cred, knn_conf, reg_pred, reg_conf
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--model-setup', required=True,
help='Model setup dictionary.')
parser.add_argument('--lsh', action='store_true', default=False,
help='If true, uses locally sensitive hashing \
(with k=10 NN) for NN search.')
args = parser.parse_args()
model, train, test, vocab, setup = setup_model(args)
if setup['dataset'] == 'snli':
converter = convert_snli_seq
use_snli = True
else:
converter = convert_seq
use_snli = False
with open(os.path.join(setup['save_path'], 'calib.json')) as f:
calibration_idx = json.load(f)
calibration = [train[i] for i in calibration_idx]
train = [x for i, x in enumerate(train) if i not in calibration_idx]
'''save dknn layers for training data'''
dknn = DkNN(model, lsh=args.lsh)
dknn.build(train, batch_size=setup['batchsize'],
converter=converter, device=args.gpu)
'''calibrate the dknn credibility values'''
dknn.calibrate(calibration, batch_size=setup['batchsize'],
converter=converter, device=args.gpu)
'''run dknn on evaluation data'''
test_iter = chainer.iterators.SerialIterator(
test, setup['batchsize'], repeat=False)
test_iter.reset()
print('run dknn on evaluation data')
total = 0
n_reg_correct = 0
n_knn_correct = 0
n_batches = len(test) // setup['batchsize']
for test_batch in tqdm(test_iter, total=n_batches):
data = converter(test_batch, device=args.gpu, with_label=True)
text = data['xs']
knn_pred, knn_cred, knn_conf, reg_pred, reg_conf = dknn.predict(
text, snli=use_snli)
label = [int(x) for x in data['ys']]
total += len(label)
n_knn_correct += sum(x == y for x, y in zip(knn_pred, label))
n_reg_correct += sum(x == y for x, y in zip(reg_pred, label))
print('knn accuracy', n_knn_correct / total)
print('reg accuracy', n_reg_correct / total)
if __name__ == '__main__':
main()