forked from antgroup/echomimic_v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
246 lines (197 loc) · 9.57 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import cv2
import os
import random
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
import sys
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from decord import VideoReader
from moviepy.editor import VideoFileClip, AudioFileClip
import warnings
warnings.filterwarnings('ignore')
# ffmpeg_path = os.getenv('FFMPEG_PATH')
ffmpeg_path = '/home/Image2Video/ffmpeg-4.4-amd64-static'
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/prompts/infer.yaml")
parser.add_argument("-W", type=int, default=768)
parser.add_argument("-H", type=int, default=768)
parser.add_argument("-L", type=int, default=240)
parser.add_argument("--seed", type=int, default=3407)
parser.add_argument("--context_frames", type=int, default=12)
parser.add_argument("--context_overlap", type=int, default=3)
parser.add_argument("--cfg", type=float, default=2.5)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--sample_rate", type=int, default=16000)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--ref_images_dir", type=str, default=f'./assets/halfbody_demo/refimag')
parser.add_argument("--audio_dir", type=str, default='./assets/halfbody_demo/audio')
parser.add_argument("--pose_dir", type=str, default="./assets/halfbody_demo/pose")
parser.add_argument("--refimg_name", type=str, default='natural_bk_openhand/0035.png')
parser.add_argument("--audio_name", type=str, default='chinese/echomimicv2_woman.wav')
parser.add_argument("--pose_name", type=str, default="01")
args = parser.parse_args()
return args
def main(args):
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = args.device
if device.__contains__("cuda") and not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
model_flag = '{}-iter{}'.format(config.motion_module_path.split('/')[-2], config.motion_module_path.split('/')[-1].split('-')[-1][:-4])
save_dir = Path(f"outputs/{model_flag}-seed{args.seed}/")
save_dir.mkdir(exist_ok=True, parents=True)
print(save_dir)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained( #类本地导入
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
## denoising net init
if os.path.exists(config.motion_module_path):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d( #类本地导入
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False
)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( #类本地导入
dtype=weight_dtype, device=device
)
pose_net.load_state_dict(torch.load(config.pose_encoder_path))
### load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
############# model_init finished #############
width, height = args.W, args.H
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline( #类本地导入
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=weight_dtype)
if args.seed is not None and args.seed > -1:
generator = torch.manual_seed(args.seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
final_fps = args.fps
ref_images_dir = args.ref_images_dir
audio_dir = args.audio_dir
pose_dir = args.pose_dir
refimg_name = args.refimg_name
audio_name = args.audio_name
pose_name = args.pose_name
inputs_dict = {
"refimg": f'{ref_images_dir}/{refimg_name}',
"audio": f'{audio_dir}/{audio_name}',
"pose": f'{pose_dir}/{pose_name}',
}
start_idx = 0
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
ref_flag = '.'.join([refimg_name.split('/')[-2], refimg_name.split('/')[-1]])
save_path = Path(f"{save_dir}/{ref_flag}/{pose_name}")
save_path.mkdir(exist_ok=True, parents=True)
ref_s = refimg_name.split('/')[-1].split('.')[0]
save_name = f"{save_path}/{ref_s}-a-{audio_name}-i{start_idx}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((args.W, args.H))
audio_clip = AudioFileClip(inputs_dict['audio'])
args.L = min(args.L, int(audio_clip.duration * final_fps), len(os.listdir(inputs_dict['pose'])))
pose_list = []
for index in range(start_idx, start_idx + args.L): #处理手部关键点信息,将首部关键点坐标转换为图片
tgt_musk = np.zeros((args.W, args.H, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
# cv2.imwrite(f'del/{index}.jpg',im.astype(np.uint8)) #这里将手部关键点绘制成图片,在这里没有进行像素值归一化
tgt_musk[rb:re,cb:ce,:] = im #对手部关键点图片进行裁剪,其实与原图大小相同
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(args.L / final_fps) #剪出音频的前N秒
video = pipe(
ref_image_pil,
inputs_dict['audio'], #将音频的地址传入
poses_tensor[:,:,:args.L,...], #测试文件的pose只包含了手部动作
width,
height,
args.L, # video_length
args.steps, # num_inference_steps
args.cfg, # guidance_scale = 2.5
generator=generator,
audio_sample_rate=args.sample_rate,
context_frames=args.context_frames, # 12
fps=final_fps, # 24
context_overlap=args.context_overlap, # 3
start_idx=start_idx, # 0
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], args.L)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=final_fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
os.system("rm {}".format(save_name + "_woa_sig.mp4"))
print(save_name)
if __name__ == "__main__":
images = [os.path.join('test',i) for i in os.listdir("./assets/halfbody_demo/refimag/test")]
audios = [os.path.join('chinese',i) for i in os.listdir("./assets/halfbody_demo/audio/chinese")]
args = parse_args()
for image in images:
args.refimg_name = image
args.audio_name = random.choice(audios)
main(args)