forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosest_pair_of_points.py
141 lines (107 loc) · 4.16 KB
/
closest_pair_of_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
The algorithm finds distance between closest pair of points
in the given n points.
Approach used -> Divide and conquer
The points are sorted based on Xco-ords and
then based on Yco-ords separately.
And by applying divide and conquer approach,
minimum distance is obtained recursively.
>> Closest points can lie on different sides of partition.
This case handled by forming a strip of points
whose Xco-ords distance is less than closest_pair_dis
from mid-point's Xco-ords. Points sorted based on Yco-ords
are used in this step to reduce sorting time.
Closest pair distance is found in the strip of points. (closest_in_strip)
min(closest_pair_dis, closest_in_strip) would be the final answer.
Time complexity: O(n * log n)
"""
def euclidean_distance_sqr(point1, point2):
"""
>>> euclidean_distance_sqr([1,2],[2,4])
5
"""
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
def column_based_sort(array, column=0):
"""
>>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1)
[(3, 0), (5, 1), (4, 2)]
"""
return sorted(array, key=lambda x: x[column])
def dis_between_closest_pair(points, points_counts, min_dis=float("inf")):
"""
brute force approach to find distance between closest pair points
Parameters :
points, points_count, min_dis (list(tuple(int, int)), int, int)
Returns :
min_dis (float): distance between closest pair of points
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
5
"""
for i in range(points_counts - 1):
for j in range(i + 1, points_counts):
current_dis = euclidean_distance_sqr(points[i], points[j])
min_dis = min(min_dis, current_dis)
return min_dis
def dis_between_closest_in_strip(points, points_counts, min_dis=float("inf")):
"""
closest pair of points in strip
Parameters :
points, points_count, min_dis (list(tuple(int, int)), int, int)
Returns :
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
85
"""
for i in range(min(6, points_counts - 1), points_counts):
for j in range(max(0, i - 6), i):
current_dis = euclidean_distance_sqr(points[i], points[j])
min_dis = min(min_dis, current_dis)
return min_dis
def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts):
"""divide and conquer approach
Parameters :
points, points_count (list(tuple(int, int)), int)
Returns :
(float): distance btw closest pair of points
>>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2)
8
"""
# base case
if points_counts <= 3:
return dis_between_closest_pair(points_sorted_on_x, points_counts)
# recursion
mid = points_counts // 2
closest_in_left = closest_pair_of_points_sqr(
points_sorted_on_x, points_sorted_on_y[:mid], mid
)
closest_in_right = closest_pair_of_points_sqr(
points_sorted_on_y, points_sorted_on_y[mid:], points_counts - mid
)
closest_pair_dis = min(closest_in_left, closest_in_right)
"""
cross_strip contains the points, whose Xcoords are at a
distance(< closest_pair_dis) from mid's Xcoord
"""
cross_strip = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis:
cross_strip.append(point)
closest_in_strip = dis_between_closest_in_strip(
cross_strip, len(cross_strip), closest_pair_dis
)
return min(closest_pair_dis, closest_in_strip)
def closest_pair_of_points(points, points_counts):
"""
>>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)]))
28.792360097775937
"""
points_sorted_on_x = column_based_sort(points, column=0)
points_sorted_on_y = column_based_sort(points, column=1)
return (
closest_pair_of_points_sqr(
points_sorted_on_x, points_sorted_on_y, points_counts
)
) ** 0.5
if __name__ == "__main__":
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))