forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmith_waterman.py
193 lines (166 loc) · 6.26 KB
/
smith_waterman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
The Smith-Waterman algorithm is a dynamic programming algorithm used for sequence
alignment. It is particularly useful for finding similarities between two sequences,
such as DNA or protein sequences. In this implementation, gaps are penalized
linearly, meaning that the score is reduced by a fixed amount for each gap introduced
in the alignment. However, it's important to note that the Smith-Waterman algorithm
supports other gap penalty methods as well.
"""
def score_function(
source_char: str,
target_char: str,
match: int = 1,
mismatch: int = -1,
gap: int = -2,
) -> int:
"""
Calculate the score for a character pair based on whether they match or mismatch.
Returns 1 if the characters match, -1 if they mismatch, and -2 if either of the
characters is a gap.
>>> score_function('A', 'A')
1
>>> score_function('A', 'C')
-1
>>> score_function('-', 'A')
-2
>>> score_function('A', '-')
-2
>>> score_function('-', '-')
-2
"""
if "-" in (source_char, target_char):
return gap
return match if source_char == target_char else mismatch
def smith_waterman(
query: str,
subject: str,
match: int = 1,
mismatch: int = -1,
gap: int = -2,
) -> list[list[int]]:
"""
Perform the Smith-Waterman local sequence alignment algorithm.
Returns a 2D list representing the score matrix. Each value in the matrix
corresponds to the score of the best local alignment ending at that point.
>>> smith_waterman('ACAC', 'CA')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('acac', 'ca')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('ACAC', 'ca')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('acac', 'CA')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('ACAC', '')
[[0], [0], [0], [0], [0]]
>>> smith_waterman('', 'CA')
[[0, 0, 0]]
>>> smith_waterman('ACAC', 'CA')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('acac', 'ca')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('ACAC', 'ca')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('acac', 'CA')
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]]
>>> smith_waterman('ACAC', '')
[[0], [0], [0], [0], [0]]
>>> smith_waterman('', 'CA')
[[0, 0, 0]]
>>> smith_waterman('AGT', 'AGT')
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]]
>>> smith_waterman('AGT', 'GTA')
[[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 2, 0]]
>>> smith_waterman('AGT', 'GTC')
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0]]
>>> smith_waterman('AGT', 'G')
[[0, 0], [0, 0], [0, 1], [0, 0]]
>>> smith_waterman('G', 'AGT')
[[0, 0, 0, 0], [0, 0, 1, 0]]
>>> smith_waterman('AGT', 'AGTCT')
[[0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 0, 3, 1, 1]]
>>> smith_waterman('AGTCT', 'AGT')
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 1], [0, 0, 0, 1]]
>>> smith_waterman('AGTCT', 'GTC')
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 1, 1]]
"""
# make both query and subject uppercase
query = query.upper()
subject = subject.upper()
# Initialize score matrix
m = len(query)
n = len(subject)
score = [[0] * (n + 1) for _ in range(m + 1)]
kwargs = {"match": match, "mismatch": mismatch, "gap": gap}
for i in range(1, m + 1):
for j in range(1, n + 1):
# Calculate scores for each cell
match = score[i - 1][j - 1] + score_function(
query[i - 1], subject[j - 1], **kwargs
)
delete = score[i - 1][j] + gap
insert = score[i][j - 1] + gap
# Take maximum score
score[i][j] = max(0, match, delete, insert)
return score
def traceback(score: list[list[int]], query: str, subject: str) -> str:
r"""
Perform traceback to find the optimal local alignment.
Starts from the highest scoring cell in the matrix and traces back recursively
until a 0 score is found. Returns the alignment strings.
>>> traceback([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]], 'ACAC', 'CA')
'CA\nCA'
>>> traceback([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]], 'acac', 'ca')
'CA\nCA'
>>> traceback([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]], 'ACAC', 'ca')
'CA\nCA'
>>> traceback([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 2], [0, 1, 0]], 'acac', 'CA')
'CA\nCA'
>>> traceback([[0, 0, 0]], 'ACAC', '')
''
"""
# make both query and subject uppercase
query = query.upper()
subject = subject.upper()
# find the indices of the maximum value in the score matrix
max_value = float("-inf")
i_max = j_max = 0
for i, row in enumerate(score):
for j, value in enumerate(row):
if value > max_value:
max_value = value
i_max, j_max = i, j
# Traceback logic to find optimal alignment
i = i_max
j = j_max
align1 = ""
align2 = ""
gap = score_function("-", "-")
# guard against empty query or subject
if i == 0 or j == 0:
return ""
while i > 0 and j > 0:
if score[i][j] == score[i - 1][j - 1] + score_function(
query[i - 1], subject[j - 1]
):
# optimal path is a diagonal take both letters
align1 = query[i - 1] + align1
align2 = subject[j - 1] + align2
i -= 1
j -= 1
elif score[i][j] == score[i - 1][j] + gap:
# optimal path is a vertical
align1 = query[i - 1] + align1
align2 = f"-{align2}"
i -= 1
else:
# optimal path is a horizontal
align1 = f"-{align1}"
align2 = subject[j - 1] + align2
j -= 1
return f"{align1}\n{align2}"
if __name__ == "__main__":
query = "HEAGAWGHEE"
subject = "PAWHEAE"
score = smith_waterman(query, subject, match=1, mismatch=-1, gap=-2)
print(traceback(score, query, subject))