forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsol1.py
51 lines (41 loc) · 1.21 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Problem 119: https://projecteuler.net/problem=119
Name: Digit power sum
The number 512 is interesting because it is equal to the sum of its digits
raised to some power: 5 + 1 + 2 = 8, and 8^3 = 512. Another example of a number
with this property is 614656 = 28^4. We shall define an to be the nth term of
this sequence and insist that a number must contain at least two digits to have a sum.
You are given that a2 = 512 and a10 = 614656. Find a30
"""
import math
def digit_sum(n: int) -> int:
"""
Returns the sum of the digits of the number.
>>> digit_sum(123)
6
>>> digit_sum(456)
15
>>> digit_sum(78910)
25
"""
return sum(int(digit) for digit in str(n))
def solution(n: int = 30) -> int:
"""
Returns the value of 30th digit power sum.
>>> solution(2)
512
>>> solution(5)
5832
>>> solution(10)
614656
"""
digit_to_powers = []
for digit in range(2, 100):
for power in range(2, 100):
number = int(math.pow(digit, power))
if digit == digit_sum(number):
digit_to_powers.append(number)
digit_to_powers.sort()
return digit_to_powers[n - 1]
if __name__ == "__main__":
print(solution())