-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSkewU.py
86 lines (64 loc) · 1.96 KB
/
SkewU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
#!/usr/bin/python
# Author: Niam Moltta
# UY - 2017
# License: MIT
# Calculating Skewness Statistic
import pandas as pd
import matplotlib.pylab as plt
from sklearn import preprocessing
from scipy.stats import skew
import numpy as np
import seaborn
import re
print ' '
print ' '
print ' Welcome to SkewU.py'
print ' --by Niam Moltta--'
print ' ~~/\//V\ '
print ' '
print ' '
print ' '
print 'Application: SKEWNESS CALCULATION.\n\nINSTRUCTIONS:\n\n- Select file, select column.\n- Returns skewness value.\n- Returns skewness representation graph.\n\n'
fhand = raw_input('Enter .csv file name: ')
if fhand == '':
print ' '
print 'Arrivederci!'
print ' '
exit()
print ' '
filehand = str(fhand)
data = pd.read_csv(filehand)
frame = pd.DataFrame(data)
coolist = frame.columns
columns = np.asarray(coolist)
while True:
print ' '
print 'Columns in', re.findall('(.+?).csv', filehand), 'are:\n'
print columns
print ' '
fh = raw_input('Enter column header: ')
column = str(fh)
if (column == '') | (column == 'ya'):
break
else:
# Just in case, replace Missing Values with zero:
data[column].fillna(0,inplace=True)
print 'Missing values replaced with zeros.'
print ' '
Col = preprocessing.scale(data[column])
skness = skew(Col)
xlabel = str(skness)
figure = plt.figure()
print 'Skewness =', skness
figure.add_subplot(121)
plt.hist(Col,facecolor='lightblue',alpha=0.75)
plt.xlabel(" Skewness greater than zero shows large skewed distribution --> ")
plt.title(column)
plt.text(2,100000,"Skewness: {0:.2f}".format(skness))
figure.add_subplot(122)
plt.boxplot(Col)
plt.title("Skewed Distribution")
plt.xlabel(xlabel)
plt.show()
print '\nHasta la vista, human.\n'