-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStan.py
135 lines (100 loc) · 3.64 KB
/
Stan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
#!/usr/bin/python
# Author: Niam Moltta
# UY - 2017
# License : MIT
# Centering & Scaling Data
import pandas as pd
import matplotlib.pylab as plt
from sklearn import preprocessing
import re
import numpy as np
import seaborn
print ' '
print ' '
print ' Welcome to Stan.py'
print ' -- by Niam Moltta --'
print ' ~~/\//V\ '
print ' '
print ' '
print ' '
print 'Application: STANDARDIZATION OF DATA.\n\nINSTRUCTIONS:\n\n- You need to run this program in the same folder that contains your data.\n- Select file, select column.\n- Returns standardized data graph.\n- Create file with new data (optional).\n\nWhen prompted:\n\n- Enter "Y" to create a .txt file with the standardized data.\n- Enter "n" to analyze another column, or:\n- Enter "ya" to finish the program.\n\n'
fhand = raw_input('Enter file name: ')
filecsv = str(fhand)
if filecsv == '':
print ' '
print 'I hate vanellus chilensis'
print ' '
exit()
data = pd.read_csv(filecsv)
print ' '
frame = pd.DataFrame(data)
coolist = frame.columns
columns = np.asarray(coolist)
while True:
print ' '
print 'Columns in', re.findall('(.+?).csv', filecsv), 'are:\n'
print columns
print ' '
hand = raw_input('Enter column header:\n\n')
column = str(hand)
if (column == 'ya') | (column == ''):
break
else:
print ' '
print 'Searching...\n'
print ' '
print column,'identified.'
# Replace missing values with zeros in the selected [column]
data[column].fillna(0,inplace=True)
print ' '
print 'Missing values were replaced with zeros'
print ' '
# Scale method from scikit-learn to transform the distribution
Col = preprocessing.scale(data[column])
print 'Data succesfully transformed\n\nDrawing histograms...'
# Draw histograms:
figure = plt.figure()
ax1 = figure.add_subplot(121)
plt.hist(data[column],facecolor='red',alpha=0.75)
plt.xlabel(column)
plt.ylabel("Frequency")
plt.title("Original Histogram")
ax1.text(300,100000,"Mean: {0:.2f} \n Std: {1:.2f}".format(data[column].mean(),data[column].std()))
ax2 = figure.add_subplot(122)
plt.hist(Col,facecolor='lightblue',alpha=0.75)
plt.xlabel("Data - Transformed")
plt.title("Standardized Histogram")
ax2.text(2,100000,"Mean: {0:.2f} \n Std: {1:.2f}".format(Col.mean(),Col.std()))
plt.show()
print ' '
print ' -- Save the figure, or close it to continue -- '
print ' '
user = raw_input('Enter Y/n to create file: ')
answer = str(user)
if answer == 'Y':
Col = preprocessing.scale(data[column])
# Create file with standarized data:
nfile = open('Standardized.txt', 'w')
# Fill it with data:
for value in Col:
val = str(value)
nfile.write(val)
nfile.write('\n')
nfile.close()
print ' '
print 'File created as "Standardized.txt"\n\nIf you want to transform another column, you need to change this file name in your folder in order to create a new one.'
print ' '
elif answer == '':
break
elif answer == 'n':
print ' '
print 'Not a single file was created.'
print ' '
continue
else:
break
print ' '
print 'Hasta la vista, human.'
print ' '
exit()