-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathalignStats.py
executable file
·597 lines (467 loc) · 18.4 KB
/
alignStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#!/usr/bin/env python
"""
Extract alignment statistics from a SAM/BAM file.
Adapted from the Celloline stats script
available at: https://github.com/Teichlab/celloline/blob/master/lib/stats.py
"""
import os
import sys
import re
import argparse
import pysam
import logging
import cPickle as pickle
from collections import Counter, defaultdict, OrderedDict
from intervaltree import IntervalTree
from joblib import Parallel, delayed
#LOAD GTF FILE
def load_gtf(gtf_path):
"""
Load a GTF annotation and create an index using IntervalTrees.
Args:
gtf_path: Path to the GTF file to load.
Returns:
Dictionary containing IntervalTree indexes of the annotation.
"""
gtf_index = defaultdict()
with open(gtf_path) as gtf_file:
for line in gtf_file:
if not line.startswith("#"):
entry = line.split("\t")
entry_addition = entry[8]
entry_addition = entry_addition.split(";")
entry_addition = entry_addition[0].split(" ")
gene_id = entry_addition[1]
feature = entry[2]
#TYPE(Gene, exon etc.), START, END, STRAND, gene_ID
info = [feature, entry[3], entry[4], entry[6], gene_id]
#Build GTF INDEX
if feature != "" and entry[3] != entry[4]:
if entry[0] in gtf_index:
index = gtf_index[entry[0]]
else:
index = IntervalTree()
index.addi(int(info[1]), int(info[2]), info)
gtf_index[entry[0]] = index
return gtf_index
def gen_stats(input_file, input_type, sample_name, gtf_dict):
"""
Generate alignment stats from a SAM/BAM file.
Loop over alignments in a SAM/BAM file and extract statistics such as the
numer of reads aligned to introns, exons, intergenic regions etc.
Args:
input_file: An open BAM or SAM file.
input_type: Whether the file is 'bam' or 'sam'.
sample_name: A name relating to this file.
gtf_dict: Dictionary containing GTF index.
Returns:
Dictionary containing alignment statistics.
"""
logger = logging.getLogger("stats." + sample_name[0:10])
#OUTPUT TABLE CONTAING STATS
output_table = OrderedDict()
#Dict indicating to which genes a specific read maps to
#It is a temporary dict
exonic_mappings_temp = defaultdict(str)
#Dict indicating which read is multi-mapped
#It is a temporary dict
exonic_multi_table = defaultdict(str)
# Sample
output_table["sample"] = sample_name
#MAPPABILITY
output_table["total"] = 0
output_table["mapped"] = 0
output_table["unmapped"] = 0
output_table["unique"] = 0
output_table["multi"] = 0
#CODING VERSUS NON-CODING REGIONS
output_table["intergenic"] = 0
output_table["intragenic"] = 0
output_table["exonic"] = 0
output_table["intronic"] = 0
output_table["ambigious"] = 0
#CODING REGIONS MAPPABILITY
output_table["exonicU"] = 0
output_table["exonicM"] = 0
#ALIGNMENT CODING VS NONCODING
output_table["alignments"] = 0
output_table["multi-intergenic"] = 0
output_table["multi-intragenic"] = 0
output_table["multi-exonic"] = 0
output_table["multi-intronic"] = 0
output_table["multi-ambigious"] = 0
#ERROR
output_table["perfect"] = 0
output_table["partly_perfect"] = 0
output_table["mapped_no_correct"] = 0
for i in range(0, 10):
output_table["S_" + str(i)] = 0
output_table["S_10+"] = 0
output_table["I"] = 0
output_table["D"] = 0
output_table["INDEL"] = 0
reads = Counter()
if input_type == "bam":
ref_map = input_file.references
input_file = input_file.fetch(until_eof=True)
line_count = 0
for line in input_file:
line_count += 1
if input_type == "bam": # BAM input line
split = str(line).split("\t")
split[2] = ref_map[int(split[2])]
split[3] = int(split[3]) + 1
elif not line.startswith("@"): # SAM input line
split = line.split("\t")
else:
continue
read_name = split[0]
flag_code = int(split[1])
chrom = split[2]
pos = split[3]
errors = split[5]
errors_a = list(errors)
number = ""
num = 0
error_table = defaultdict(int)
name_and_flag = read_name
#CHECK IF READ MAPPED OR UNMAPPED
#IT US UNMAPPED
if flag_code & 0x0004 != 0:
output_table["unmapped"] += 1
output_table["total"] += 1
error_table["*"] += 1
#IT IS MAPPED
else:
if flag_code & 0x0001 != 0: #This is paired end
if flag_code & 0x0040 != 0: #1st read
name_and_flag += ";first"
if flag_code & 0x0080 != 0: #2nd read
name_and_flag += ";second"
# CHECK TO WHICH GENE(S) IT MAPPED TO
genes_info, num_genes, num_exons = get_gene(gtf_dict, [chrom, pos])
output_table["alignments"] += 1.0
#STATS
if name_and_flag not in reads:
reads[name_and_flag] += 1
output_table["unique"] += 1
output_table["total"] += 1
output_table["mapped"] += 1
if num_genes == 0:
output_table["intergenic"] += 1
elif num_genes == 1:
output_table["intragenic"] += 1
if num_exons == 0:
output_table["intronic"] += 1
else:
output_table["exonic"] += 1
output_table["exonicU"] += 1
exons = []
if name_and_flag in exonic_mappings_temp:
exons = exonic_mappings_temp[name_and_flag]
exons.append([genes_info[0], chrom, pos])
exonic_mappings_temp[name_and_flag] = exons
elif num_genes > 1:
output_table["ambigious"] += 1
#READ IS MULTI-MAPPED
else:
if reads[name_and_flag] == 1:
output_table["unique"] -= 1
output_table["exonicU"] -= 1
output_table["multi"] += 1
reads[name_and_flag] += 1
exons = []
#GET KNOWLEDGE IF FIRST MAPPING EXONIC OR INTRONIC
if name_and_flag in exonic_mappings_temp:
exons = exonic_mappings_temp[name_and_flag]
if num_genes == 0:
output_table["multi-intergenic"] += (1)
elif num_genes == 1:
output_table["multi-intragenic"] += (1)
if num_exons == 0:
output_table["multi-intronic"] += (1)
else:
output_table["multi-exonic"] += (1)
exons.append([genes_info[0], chrom, pos])
elif num_genes > 1:
output_table["multi-ambigious"] += (1)
#IF AT LEAST ONE EXONIC ALIGNMENT
if len(exons) > 0:
exonic_multi_table[name_and_flag] = exons
#PARSE MAPPING ERRORS
for i in errors_a:
if re.match("[0-9]", i):
number += (i)
elif re.match("[A-Z]", i):
num = int(number)
error_table[i] += num
number = ""
#TABLE OF HOW MANY READS MAP PERFECT, PARTLY PERFECT ETC
if "M" in error_table and len(error_table) == 1:
output_table["perfect"] += 1
elif "M" in error_table and len(error_table) > 1:
output_table["partly_perfect"] += 1
elif "M" not in error_table and "*" not in error_table:
output_table["mapped_no_correct"] += 1
if "S" in error_table:
if int(error_table["S"]) < 10:
output_table["S_" + str(error_table["S"])] += 1
else:
output_table["S_10+"] += 1
elif "S" not in error_table:
output_table["S_0"] += 1
if "I" in error_table:
output_table["I"] += 1
if "D" in error_table:
output_table["D"] += 1
if "I" in error_table or "D" in error_table:
output_table["INDEL"] += 1
if (line_count % 1000000) == 0:
logger.debug(sample_name + " line " + str(line_count) + "...")
output_table["exonicM"] = len(exonic_multi_table.keys())
return output_table
def get_stats_line(stats_table):
"""
Get an output line from a stats table.
Args:
stats_table: Dictionary of alignment statistics.
Returns:
String representing the results for one file.
"""
logger = logging.getLogger("stats.extract")
out_line = ""
for stat, value in stats_table.iteritems():
if stat in ["unique", "multi", "intragenic", "intergenic",
"exonic", "intronic", "ambigious", "exonicM", "exonicU"]:
value = (value + 0.0) / (stats_table["mapped"] + 0.0)
value = "%.2f" % (100.0 * (value))
elif stat in ["multi-intragenic", "multi-intergenic", "multi-exonic",
"multi-intronic", "multi-ambigious"]:
value = (value + 0.0)
if stats_table["alignments"] != 0:
value = value / (stats_table["alignments"] + 0.0)
value = "%.2f" % (100.0 * (value))
value = str(value)
if not stat == "sample":
out_line += "," + value
else:
out_line += value
logger.debug(stat + " : " + value)
out_line += "\n"
return out_line
def write_stats(output_path, stats_list):
"""
Write a series of results to a file.
Args:
output_path: Path to write results to.
stats_list: List of dictionaries containing results from input files.
"""
cols = stats_list[0].keys()
with open(output_path, "w") as out_file:
out_file.write(",".join(cols) + "\n")
for stats_table in stats_list:
stats_line = get_stats_line(stats_table)
out_file.write(stats_line)
def get_gene(gtf_dict, pos_pair):
"""
Identify which genes overlap a given position.
Args:
gtf_dict: Dictionary containing GTF index.
pos_pair: Tuple containing genomic position (chrom, pos).
Returns:
Tuple containing the list of overlapping genes, the number of
overlapping genes and the number of overlapping exons.
"""
num_genes = 0
num_exons = 0
if pos_pair[0] not in gtf_dict:
#print ("Ignored pos: " + pos_pair[0])
return ([], num_genes, num_exons)
entries = gtf_dict[pos_pair[0]]
pos = int(pos_pair[1])
found = []
found = entries.search(pos)
gene_list = []
for entry in found:
info = entry[2]
if info[0] == "gene":
gene_list.append(info)
num_genes += 1
elif info[0] == "exon":
num_exons += 1
return (gene_list, num_genes, num_exons)
def process_file(input_file, input_type, index, is_parallel):
"""
Process an individual SAM/BAM file.
How we want to process the file depends on the input type and whether we
are operating in parallel. If in parallel the index must be loaded for each
input file. If the input is a BAM file it needs to be read using Pysam, if
SAM it can be read directly as a text file.
Args:
input_file: Path to the input file.
input_type: Whether the file is 'bam' or 'sam'.
index: If operating in parallel a string to the index file, if not the
loaded GTF index dictionary.
is_parallel: Whether to operate in parallel.
Returns:
Dictionary containing alignment statistics for the input file.
"""
sample_name = input_file.split("/")[-1]
logger = logging.getLogger("stats." + sample_name[0:10])
logger.info("Processing " + sample_name + "...")
if is_parallel:
logger.info("Loading index...")
with open(index, "rb") as index_file:
loaded_index = pickle.load(index_file)
logger.info("Loaded.")
else:
loaded_index = index
if input_type == "sam":
logger.info("Parsing SAM file...")
with open(input_file) as sam:
output_table = gen_stats(sam, input_type, sample_name, loaded_index)
elif input_type == "bam":
logger.info("Parsing BAM file...")
bam = pysam.AlignmentFile(input_file, "rb")
output_table = gen_stats(bam, input_type, sample_name, loaded_index)
logger.info("Finished " + sample_name)
return output_table
def get_index(args):
"""
Load a GTF index if available or create from GTF file if not found.
If a valid path to an index file is given that file will be loaded. If no
index file was specified or the file does not exist the annotation will be
read from a GTF file. It will then be pickled if an index file is specified.
When running in parallel the path to the index file is returned rather than
the index dictionary itself.
Args:
args: Options from the command line.
Returns:
Dictionary containing GTF index or path to index file if in parallel.
"""
logger = logging.getLogger("stats.index")
if args.index and os.path.isfile(args.index):
logger.info("Index found at " + args.index)
if not args.is_parallel:
logger.info("Loading index...")
with open(args.index, "rb") as index_file:
index = pickle.load(index_file)
logger.info("Loaded.")
else:
index = args.index
elif args.gtf and os.path.isfile(args.gtf):
logger.info("No index file found.")
logger.info("Loading GTF file...")
gtf_dict = load_gtf(args.gtf)
logger.info("Loaded.")
if args.index:
logger.info("Saving index to " + args.index + "...")
with open(args.index, "wb") as index_file:
pickle.dump(gtf_dict, index_file, -1)
logger.info("Saved.")
if not args.is_parallel:
index = gtf_dict
else:
index = args.index
return index
def get_args():
"""
Read arguments from the command line and check they are valid.
"""
logger = logging.getLogger("stats.args")
parser = argparse.ArgumentParser(
description="Extract alignment statistics from a SAM/BAM file")
parser.add_argument("inputs",
metavar="SAM/BAM",
nargs="+",
help="Input SAM or BAM files")
parser.add_argument("-o", "--out",
help="Output file",
required=True)
parser.add_argument("-g", "--gtf",
help="GTF annotation file")
parser.add_argument("-i", "--index",
help="""Annotation index file. Required when
operating in parallel.""")
parser.add_argument("-t", "--type",
choices=["sam", "bam"],
help="Type of input file",
required=True)
parser.add_argument("-p", "--parallel",
type=int,
default=1,
help="""Number of files to process in parallel.
Requires N + 1 threads if greater than 1.""")
args = parser.parse_args()
args.is_parallel = False
if args.parallel < 1:
logger.error("Number of parallel files must be positive")
sys.exit()
elif args.parallel > 1:
args.is_parallel = True
logger.info("Running with " + str(args.parallel) + " jobs")
if args.is_parallel and not args.index:
logger.error("Index file is required when running in parallel.")
sys.exit()
if not (args.index and os.path.isfile(args.index)):
if not (args.gtf and os.path.isfile(args.gtf)):
logger.error("No GTF or index file found.")
sys.exit()
return args
def setup_logging():
"""
Setup logging system.
Log is written to 'alignmentStats.log'.
"""
logger = logging.getLogger("stats")
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
file_handler = logging.FileHandler('alignmentStats.log')
file_handler.setLevel(logging.INFO)
# create console handler with a higher log level
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
# create formatter and add it to the handlers
format_str = "[%(asctime)s] %(levelname)s %(name)s: %(message)s"
formatter = logging.Formatter(format_str, "%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(formatter)
format_str = "[%(asctime)s] %(message)s"
formatter = logging.Formatter(format_str, "%H:%M:%S")
console_handler.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(console_handler)
logger.addHandler(file_handler)
def main():
"""
Main function.
1. Setup logging
2. Get arguments
3. Get index
4. Process files
5. Write output
"""
setup_logging()
logger = logging.getLogger("stats." + __name__)
args = get_args()
index = get_index(args)
logger.warning("Positions not in annotation will be ignored.")
logger.info("Found " + str(len(args.inputs)) + " input file(s):")
for input_file in sorted(args.inputs):
logger.debug(input_file)
if args.is_parallel:
stats = Parallel(n_jobs=args.parallel,
verbose=100,
batch_size=1)(delayed(process_file)(input_file,
args.type,
index,
args.is_parallel)
for input_file in args.inputs)
else:
stats = []
for input_file in args.inputs:
output_table = process_file(input_file, args.type, index,
args.is_parallel)
stats.append(output_table)
write_stats(args.out, stats)
if __name__ == "__main__":
main()