-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_arrow_images.py
121 lines (95 loc) · 5.35 KB
/
generate_arrow_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from utils import read_arff
from bridge_clustering.functions import compute_neighbors, determine_bridges, compute_cluster_labels
from pathlib import Path
from typing import Union, Set, List, Tuple
from pyod.models.lof import LOF
def compute_arrows(X: np.ndarray, neighbor_indices: Union[None, np.ndarray], k: Union[int, None], is_bridge: Union[None, np.ndarray]=None) -> np.ndarray:
if neighbor_indices is None:
assert not k is None
_, neighbor_indices = compute_neighbors(X, k)
if k is None:
assert not neighbor_indices is None
k = neighbor_indices.shape[1]
if not is_bridge is None:
indexes = np.arange(X.shape[0])
bridge_indexes = indexes[is_bridge]
bridge_neighbor_mask = (neighbor_indices[..., np.newaxis] == bridge_indexes[np.newaxis, np.newaxis, ...]).any(axis=-1)
bridge_neighbor_mask_linear = bridge_neighbor_mask.flatten()
scatter = X[neighbor_indices] # npoints x k x ndims
new_X = np.expand_dims(X, axis=1)
arrows = (scatter - new_X).reshape((-1, 2))
if not is_bridge is None:
arrows[bridge_neighbor_mask_linear] = 0
centers = np.repeat(X, k, axis=0)
return arrows, centers
def filter_bridges(centers: np.ndarray, arrows: np.ndarray, not_is_bridge: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray]:
not_is_bridge_scattered = np.repeat(not_is_bridge, k, axis=0)
return arrows[not_is_bridge_scattered], centers[not_is_bridge_scattered]
if __name__ == '__main__':
dataset_path = Path('datasets')
export_path = Path('figures', 'arrows_undir_DEF')
plot_config = {
'bbox_inches': 'tight',
'pad_inches': 0
}
if not export_path.is_dir():
export_path.mkdir(parents=True)
k_list = [2, 5, 7, 10, 15, 20, 50]
lof_params = {
'n_neighbors': 15,
'contamination': .2
}
figsize = (9, 9)
for fullpath in dataset_path.iterdir():
dt_no_ext = fullpath.stem
X, cluster_labels = read_arff(fullpath)
fig1 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0], X[:, 1], c=cluster_labels, marker='.', alpha=.5)
plt.axis('off')
for k in k_list:
distances, indices = compute_neighbors(X, k)
is_bridge = determine_bridges(cluster_labels, indices) == 0
not_bridge = ~is_bridge
clf = LOF(**lof_params)
clf.fit(X)
outliers = clf.labels_ == 1
not_outliers = ~outliers
pred_labels = compute_cluster_labels(X, k, outliers, indices, distances)
all_arrows, all_centers = compute_arrows(X, neighbor_indices=indices, k=k)
arrows2, centers2 = compute_arrows(X, neighbor_indices=indices, k=k, is_bridge=is_bridge)
filtered_arrows2, filtered_centers2 = filter_bridges(centers2, arrows2, not_bridge, k)
pred_arrows, pred_centers = compute_arrows(X, neighbor_indices=indices, k=k, is_bridge=outliers)
filtered_pred_arrows, filtered_pred_centers = filter_bridges(pred_centers, pred_arrows, not_outliers, k)
fig2 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0][not_bridge], X[:, 1][not_bridge], c=cluster_labels[not_bridge], marker='.', alpha=.5)
plt.scatter(X[:, 0][is_bridge], X[:, 1][is_bridge], c='r', marker='^', alpha=.5)
plt.quiver(filtered_centers2[:, 0], filtered_centers2[:, 1], filtered_arrows2[:, 0], filtered_arrows2[:, 1], angles='xy', scale_units='xy', scale=1, alpha=.5, headwidth=1)
plt.axis('off')
fig3 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0], X[:, 1], c=pred_labels, marker='.', alpha=.5)
plt.axis('off')
fig4 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0][not_outliers], X[:, 1][not_outliers], c=pred_labels[not_outliers], marker='.', alpha=.5)
plt.scatter(X[:, 0][outliers], X[:, 1][outliers], c='r', marker='^', alpha=.5)
plt.quiver(filtered_pred_centers[:, 0], filtered_pred_centers[:, 1], filtered_pred_arrows[:, 0], filtered_pred_arrows[:, 1], angles='xy', scale_units='xy', scale=1, alpha=.5, headwidth=1)
plt.axis('off')
fig5 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0][not_bridge], X[:, 1][not_bridge], c=cluster_labels[not_bridge], marker='.', alpha=.5)
plt.scatter(X[:, 0][is_bridge], X[:, 1][is_bridge], c='r', marker='^', alpha=.5)
plt.axis('off')
fig6 = plt.figure(figsize=figsize)
plt.scatter(X[:, 0], X[:, 1], c=cluster_labels, marker='.', alpha=.5)
plt.quiver(all_centers[:, 0], all_centers[:, 1], all_arrows[:, 0], all_arrows[:, 1], angles='xy', scale_units='xy', scale=1, alpha=.5, headwidth=1)
plt.axis('off')
# plt.show()
fig2.savefig(export_path / f'{dt_no_ext}_k{k}_gt_arrows.png', **plot_config)
fig3.savefig(export_path / f'{dt_no_ext}_k{k}_outlier_clustering.png', **plot_config)
fig4.savefig(export_path / f'{dt_no_ext}_k{k}_outlier_arrows.png', **plot_config)
fig5.savefig(export_path / f'{dt_no_ext}_k{k}_bridges.png', **plot_config)
fig6.savefig(export_path / f'{dt_no_ext}_k{k}_all_arrows.png', **plot_config)
plt.close('all')
fig1.savefig(export_path / f'{dt_no_ext}_gt.png', **plot_config)