-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_dadc.py
88 lines (69 loc) · 2.51 KB
/
run_dadc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import pandas as pd
import sys
import pickle as pkl
import matplotlib.pyplot as plt
from utils import read_arff
from dadc.DADC import DADC
from pathlib import Path
from collections import defaultdict
from sklearn.metrics import adjusted_rand_score
if __name__ == '__main__':
sys.setrecursionlimit(15000)
syn_folder = Path('datasets', 'synthetic')
rw_folder = Path('datasets', 'real-world')
data_list = []
for fullpath in syn_folder.iterdir():
data_list.append(fullpath)
for fullpath in rw_folder.iterdir():
data_list.append(fullpath)
savepath = Path('results', 'reports')
image_savepath = savepath / 'images'
figsize = (9, 9)
export_images = True
pred_labels_dict = {}
if not image_savepath.is_dir():
image_savepath.mkdir(parents=True)
dadc_params = {
'k': 0.05,
'cfd_threshold': 0.6
}
plot_configuration = {
'bbox_inches': 'tight',
'pad_inches': 0
}
if not savepath.is_dir():
savepath.mkdir(parents=True)
df_dict = defaultdict(list)
for idx, fullpath in enumerate(data_list):
if fullpath.stem in {'banana', 'cpu', 'iono', 'segment', 'zoo'}:
print(f'skipped dataset {fullpath.stem}')
continue
print(f'{idx + 1}) clustering dataset {fullpath.stem}')
X, labels = read_arff(fullpath)
clf = DADC(**dadc_params)
pred_labels = clf.runAlgorithm(X)
pred_labels_dict[fullpath.stem] = pred_labels
print(pred_labels)
ari = adjusted_rand_score(labels, pred_labels)
df_dict['dataset'].append(fullpath.stem)
df_dict['ari'].append(ari)
if export_images:
fig = plt.figure(figsize=figsize)
plt.scatter(X[:, 0], X[:, 1], c=pred_labels, marker='.', alpha=.5)
plt.axis('off')
fig.savefig(image_savepath / f'{fullpath.stem}_DADC.png', **plot_configuration)
plt.close(fig)
df = pd.DataFrame(df_dict).set_index('dataset').sort_index()
df.to_csv(savepath / 'ari_DADC.csv')
print(df)
with open(savepath / 'report_DADC.txt', 'w') as fp:
fp.write(df.__str__())
fp.write('\n')
fp.write(f'Mean values on shape {df.shape}\n')
fp.write(df.mean().__str__())
fp.write('\n')
fp.write(f'Median values on shape {df.shape}\n')
fp.write(df.median().__str__())
with open(savepath / 'pred_labels.pkl', 'wb') as fp:
pkl.dump(pred_labels_dict, fp)