-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistical_tests.py
122 lines (97 loc) · 3.74 KB
/
statistical_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import json
import numpy as np
import pandas as pd
from math import sqrt
from typing import Union
from pathlib import Path
from scipy.stats import friedmanchisquare
def friedman_test(df: pd.DataFrame):
cols = [x for x in df.columns if x != 'dataset']
data = [df[col] for col in cols]
res = friedmanchisquare(*data)
return res
def nemenyi_test(df: pd.DataFrame):
n = df.shape[0]
k = df.shape[1]
print(f'N: {n} - k: {k}')
cols = [x for x in df.columns if x != 'dataset']
q_alpha = [1.960, 2.343, 2.569, 2.728, 2.850, 2.949, 3.031, 3.102, 3.164]
selected_q_alpha = q_alpha[k - 2]
cd = selected_q_alpha * sqrt((k * (k + 1)) / (6 * n))
ranked_df = df.rank(axis=1, method='average', numeric_only=True, ascending=False)
mean_ranks = ranked_df[cols].mean()
result = {f'{cols[x]}_{cols[y]}': {'difference': mean_ranks[x] - mean_ranks[y], 'is_significative': str(abs(mean_ranks[x] - mean_ranks[y]) >= cd)} for x in range(len(cols)) for y in range(x + 1, len(cols))}
return ranked_df, result, cd, selected_q_alpha
def generate_reports(df: pd.DataFrame, save_basepath: Union[str, Path], save_df: bool=False, save_rankings_df: bool=True, filename: str='report.txt'):
friedman_out = friedman_test(df)
nemenyi_out = nemenyi_test(df)
mask = ~df.isna().any(axis=1) # df.index != 'banana.arff'
subdf = df[mask]
if not save_basepath.is_dir():
save_basepath.mkdir(parents=True)
ranked_df, differences, cd, q_alpha = nemenyi_out
if save_df:
df.to_csv(save_basepath / 'ari_scores_all.csv')
if save_rankings_df:
ranked_df.to_csv(save_basepath / 'rankings_all.csv')
with open(save_basepath / filename, 'w') as fp:
fp.write('ARI scores:')
fp.write(df.__str__())
fp.write('\n')
fp.write('@' * 50)
fp.write('\n')
fp.write('Mean ARI:\n')
fp.write(df.mean().__str__())
fp.write('\n')
fp.write('@' * 50)
fp.write('\n')
fp.write('Median ARI:\n')
fp.write(df.median().__str__())
fp.write('\n')
fp.write('#' * 50)
fp.write('\n')
fp.write('Friedman test:\n')
fp.write(friedman_out.__str__())
fp.write('\n')
fp.write('#' * 50)
fp.write('\n')
fp.write('Rankings:\n')
fp.write(ranked_df.__str__())
fp.write('\n')
fp.write('Mean rankings:\n')
fp.write(ranked_df.mean().__str__())
fp.write('\n')
fp.write('_' * 30)
fp.write('\n')
fp.write(subdf.__str__())
fp.write('\n')
fp.write(f'Mean on shape {subdf.shape}\n')
fp.write(subdf.mean().__str__())
fp.write('\n')
fp.write(f'Median on shape {subdf.shape}\n')
fp.write(subdf.median().__str__())
fp.write('@' * 30)
fp.write('\n')
fp.write(f'CD: {cd}\n')
fp.write(f'Q alpha: {q_alpha}\n')
fp.write('Differences between mean values:\n')
fp.write(json.dumps(differences, indent=4, sort_keys=True))
if __name__ == '__main__':
savepath = Path('results', 'reports')
csv_path = savepath / 'ari_scores.csv'
df = pd.read_csv(csv_path) \
.set_index('dataset') \
.sort_index()
# dadc_df = pd.read_csv(Path('results', 'reports_dadc') / 'ari_DADC.csv')
# dadc_df['dataset'] = dadc_df['dataset'] + '.arff'
# dadc_df = dadc_df \
# .set_index('dataset') \
# .sort_index() \
# .rename({'ari': 'DADC'}, axis=1)
# print('dadc df: ')
# print(dadc_df)
# all_df = df.merge(dadc_df, left_index=True, right_index=True, how='left')
df = df.drop('AUTOCLUST', axis=1)
print(df)
generate_reports(df, savepath, filename='report.txt')