-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigure.py
101 lines (91 loc) · 3.88 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import sys
import torch
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser()
# Find if CUDA is used
parser.add_argument("--USE_CUDA", default=False, type=bool, help="Use CUDA?")
# Data parameters
parser.add_argument("--PAD_TOKEN", default=0, type=int, help="PAD token")
parser.add_argument(
"--SOS_TOKEN", default=1, type=int, help="Start of sequence token"
)
parser.add_argument(
"--EOS_TOKEN", default=2, type=int, help="End of sequence token"
)
parser.add_argument("--UNK_TOKEN", default=3, type=int, help="Unknown token")
# Model Hyper-parameters
# Configure models
parser.add_argument(
"--attn_model", default="dot", type=str, help="Options: dot/general/concat"
)
parser.add_argument(
"--hidden_size",
default=100,
type=int,
help="Dimensionality of RNN hidden (default: 100)",
)
parser.add_argument(
"--embed_size",
default=300,
type=int,
help="Dimensionality of char embedding (default: 300)",
)
parser.add_argument("--n_layers", default=1, type=int, help="Number of layers")
parser.add_argument("--dropout", default=0.1, type=int, help="Dropout probability")
parser.add_argument(
"--batch_size", default=20, type=int, help="Batch Size (default: 20)"
)
parser.add_argument(
"--checkpoint_dir",
default="checkpoints",
type=str,
help="Checkpoint directory from training run",
)
# Configure training/optimization
parser.add_argument("--path", default="", type=str, help="set path")
parser.add_argument("--lang", default="", type=str, help="Language.")
parser.add_argument(
"--n_epochs",
default=20,
type=int,
help="Number of training epochs (Default: 20)",
)
parser.add_argument("--clip", default=50.0, type=float, help="Grad clip.")
parser.add_argument("--teacher_forcing_ratio", default=0.5, type=float, help=" ")
parser.add_argument("--decoder_learning_ratio", default=5.0, type=float, help=" ")
# # Misc
# parser.add_argument("--desc", default = "",
# type = str, help = "Description for model")
# parser.add_argument("--dropout_keep_prob", default = 0.5,
# type = float, help = "Dropout keep probability of output layer (default: 0.5)")
# parser.add_argument("--l2_reg_lambda", default = 1e-5,
# type = float, help = "L2 regularization lambda (default: 1e-5)")
#
# # Training parameters
# parser.add_argument("--display_every", default = 10,
# type = int, help = "Number of iterations to display training information")
# parser.add_argument("--evaluate_every", default = 100,
# type = int, help = "Evaluate model on dev set after this many steps (default: 100)")
# parser.add_argument("--num_checkpoints", default = 5,
# type = int, help = "Number of checkpoints to store (default: 5)")
#
# parser.add_argument("--decay_rate", default = 0.9,
# type = float, help = "Decay rate for learning rate (Default: 0.9)")
#
# # Testing parameters
# # Misc Parameters
# parser.add_argument("--allow_soft_placement", default = True,
# type = bool, help = "Allow device soft device placement")
# parser.add_argument("--log_device_placement", default = False,
# type = bool, help = "Log placement of ops on devices")
# parser.add_argument("--gpu_allow_growth", default = True,
# type = bool, help = "Allow gpu memory growth")
if len(sys.argv) == 0:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args