-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_test.cpp
177 lines (148 loc) · 4.92 KB
/
graph_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "graph.h"
#include <chrono>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include "context.h"
#include "doctest.h"
#include "node.h"
namespace graph_executor {
namespace {
template <typename T> class AddAndDelay : public Node {
public:
AddAndDelay(const std::string &name = "", int delay_in_seconds = 0)
: Node(name), delay_in_seconds_(delay_in_seconds) {}
void Execute() const {
DataRef<T> lhs = inputs_[0]->template Get<T>();
DataRef<T> rhs = inputs_[1]->template Get<T>();
T result = *lhs + *rhs;
std::this_thread::sleep_for(std::chrono::seconds(delay_in_seconds_));
outputs_[0]->Put(std::move(result));
};
private:
int delay_in_seconds_;
};
template <typename T> auto ToUniquePtrs(std::vector<T *> ptr_vec) {
std::vector<std::unique_ptr<T>> uniq_ptr_vec;
for (T *ptr : ptr_vec) {
uniq_ptr_vec.emplace_back(ptr);
}
return uniq_ptr_vec;
}
} // namespace
// Concurrent node execution.
// Sequential graph execution.
TEST_CASE("SequentialGraphConcurrentNode") {
std::cerr << "SequentialGraphConcurrentNode\n";
constexpr int num_nodes = 10;
constexpr int num_contexts = 12;
constexpr int num_threads = 3;
constexpr int num_concurrent_runs = 1;
std::vector<std::unique_ptr<Node>> nodes;
for (int i = 0; i < num_nodes; ++i) {
nodes.push_back(std::make_unique<AddAndDelay<int>>(std::to_string(i), 1));
}
std::vector<std::unique_ptr<Context>> contexts;
for (int i = 0; i < num_contexts; ++i) {
contexts.push_back(
std::make_unique<GenericContext<int>>(std::to_string(i)));
}
// Fabonacci series
// y1 = x1 + x2
// y2 = x2 + y1
// y3 = y1 + y2
// ...
for (int i = 0; i < 10; ++i) {
nodes[i]->Bind({&*contexts[i], &*contexts[i + 1]}, {&*contexts[i + 2]});
}
std::vector<Context *> input_contexts = {&*contexts[0], &*contexts[1]};
Context *output_context = &*contexts[num_contexts - 1];
// `graph` takes over ownership of `nodes` and `contexts`.
Graph graph(num_threads, std::move(nodes), std::move(contexts));
// 1st Execution.
for (Context *c : input_contexts) {
CHECK(c->CanPut());
c->Put(1);
}
graph.Execute(num_concurrent_runs);
CHECK(output_context->CanGet());
{
auto output_data = output_context->Get<int>();
CHECK_EQ(*output_data, 144);
}
// 2nd Execution.
for (Context *c : input_contexts) {
CHECK(c->CanPut());
c->Put(10);
}
graph.Execute(num_concurrent_runs);
CHECK(output_context->CanGet());
{
auto output_data = output_context->Get<int>();
CHECK_EQ(*output_data, 1440);
}
}
// Concurrent node execution.
// Concurrent graph execution.
TEST_CASE("ConcurrentGraphConcurrentNode") {
std::cerr << "ConcurrentGraphConcurrentNode\n";
constexpr int num_input_contexts = 8;
constexpr int num_contexts = 2 * num_input_contexts - 1;
constexpr int num_nodes = num_input_contexts - 1;
constexpr int num_threads = 2;
constexpr int num_concurrent_runs = 10;
// The ideal buffer size greatly depends on the architecture of the graph.
// Only the input/output nodes need to have the buffer size same as the
// number of concurrent runs.
int buffer_size = num_concurrent_runs;
std::vector<std::unique_ptr<Node>> nodes;
for (int i = 0; i < num_nodes; ++i) {
nodes.push_back(std::make_unique<AddAndDelay<int>>(std::to_string(i), 1));
}
std::vector<std::unique_ptr<Context>> contexts;
for (int i = 0; i < num_contexts; ++i) {
contexts.push_back(
std::make_unique<BufferedContext<int>>(buffer_size, std::to_string(i)));
}
// Tree reduction
// y1 = x1 + x2, y2 = x3 + x4, y3 = x5 + x6, y4 = x7 + x8
// z1 = y1 + y2, z2 = y3 + y4
// w1 = z1 + z2
int base = 0;
for (int width = num_input_contexts / 2; width >= 1; width /= 2) {
for (int i = 0; i < width; ++i) {
nodes[base + i]->Bind(
{&*contexts[2 * (base + i)], &*contexts[2 * (base + i) + 1]},
{&*contexts[2 * (base + width) + i]});
}
base += width;
}
std::vector<Context *> input_contexts(num_input_contexts);
for (int i = 0; i < num_input_contexts; ++i) {
input_contexts[i] = &*contexts[i];
}
for (int i = 0; i < num_concurrent_runs; ++i) {
for (Context *c : input_contexts) {
CHECK(c->CanPut());
int rvalue = i;
c->Put(std::move(rvalue));
}
}
Context *output_context = &*contexts[num_contexts - 1];
Graph graph(num_threads, std::move(nodes), std::move(contexts));
auto start = std::chrono::high_resolution_clock::now();
graph.Execute(num_concurrent_runs);
auto stop = std::chrono::high_resolution_clock::now();
std::cout
<< "Duration: "
<< std::chrono::duration_cast<std::chrono::seconds>(stop - start).count()
<< " s";
for (int i = 0; i < num_concurrent_runs; ++i) {
CHECK(output_context->CanGet());
auto output_data = output_context->Get<int>();
CHECK_EQ(*output_data, i * num_input_contexts);
}
}
} // namespace graph_executor