forked from opendatalab/MinerU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
38 lines (34 loc) · 1.45 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import json
from loguru import logger
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
import magic_pdf.model as model_config
model_config.__use_inside_model__ = True
try:
current_script_dir = os.path.dirname(os.path.abspath(__file__))
demo_name = "demo1"
pdf_path = os.path.join(current_script_dir, f"{demo_name}.pdf")
model_path = os.path.join(current_script_dir, f"{demo_name}.json")
pdf_bytes = open(pdf_path, "rb").read()
# model_json = json.loads(open(model_path, "r", encoding="utf-8").read())
model_json = [] # model_json传空list使用内置模型解析
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
local_image_dir = os.path.join(current_script_dir, 'images')
image_dir = str(os.path.basename(local_image_dir))
image_writer = DiskReaderWriter(local_image_dir)
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
"""如果没有传入有效的模型数据,则使用内置model解析"""
if len(model_json) == 0:
if model_config.__use_inside_model__:
pipe.pipe_analyze()
else:
logger.error("need model list input")
exit(1)
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
with open(f"{demo_name}.md", "w", encoding="utf-8") as f:
f.write(md_content)
except Exception as e:
logger.exception(e)