forked from statOmics/PDA23EBI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpda_quantification_inference_noFrames.Rmd
815 lines (606 loc) · 25 KB
/
pda_quantification_inference_noFrames.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
---
title: "Statistical Methods for Quantitative MS-based Proteomics: Part II. Differential Abundance Analysis"
author: "Lieven Clement"
date: "[statOmics](https://statomics.github.io), Ghent University"
output:
html_document:
code_download: true
theme: flatly
toc: true
toc_float: true
highlight: tango
number_sections: true
bibliography: msqrob2.bib
---
<a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a>
- [Playlist PDA Preprocessing](https://www.youtube.com/watch?v=1mhg3BCuEm8&list=PLZH1hP8_LbJKqnPSS4hxTkn-tQolSCGjP)
# Outline {-}
- Francisella tularensis Example
- Hypothesis testing
- Multiple testing
- Moderated statistics
- Experimental design
Note, that the R-code is included for learners who are aiming to develop R/markdown scripts to automate their quantitative proteomics data analyses.
According to the target audience of the course we either work with a graphical user interface (GUI) in a R/shiny App msqrob2gui (e.g. Proteomics Bioinformatics course of the EBI and the Proteomics Data Analysis course at the Gulbenkian institute) or with R/markdowns scripts (e.g. Bioinformatics Summer School at UCLouvain or the Statistical Genomics Course at Ghent University).
---
# Francisella tularensis experiment
```{r echo=FALSE,out.width="50%"}
knitr::include_graphics("./figures/francisella.jpg")
```
```{r echo=FALSE}
knitr::include_graphics("./figures/tularemia_lesion.jpg")
```
- Pathogen: causes tularemia
- Metabolic adaptation key for intracellular life cycle of pathogenic microorganisms.
- Upon entry into host cells quick phasomal escape and active multiplication in cytosolic compartment.
- Franciscella is auxotroph for several amino acids, including arginine.
- Inactivation of arginine transporter delayed bacterial phagosomal escape and intracellular multiplication.
- Experiment to assess difference in proteome using 3 WT vs 3 ArgP KO mutants
## Import the data in R
<details><summary> Click to see code </summary><p>
1. Load libraries
```{r, warning=FALSE, message=FALSE}
library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
library(ggplot2)
```
2. We use a peptides.txt file from MS-data quantified with maxquant that
contains MS1 intensities summarized at the peptide level.
```{r}
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/francisella/peptides.txt"
```
3. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We can retreive the column names with the intensity data with the code below:
```{r}
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))
```
4. Read the data and store it in QFeatures object
```{r}
pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")
```
5. Update data with information on design
```{r}
colData(pe)$genotype <- pe[[1]] %>%
colnames %>%
substr(12,13) %>%
as.factor %>%
relevel("WT")
pe %>% colData
```
</p></details>
## Preprocessing
<details><summary> Click to see code to log-transfrom the data </summary><p>
1. Log transform
- Calculate number of non zero intensities for each peptide
```{r}
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
```
- Peptides with zero intensities are missing peptides and should be represent
with a `NA` value rather than `0`.
```{r}
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```
- Logtransform data with base 2
```{r}
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")
```
2. Filtering
- Handling overlapping protein groups
```{r}
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
```
- Remove reverse sequences (decoys) and contaminants. Note that this is indicated by the column names Reverse and depending on the version of maxQuant with Potential.contaminants or Contaminants.
```{r}
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Contaminant != "+")
```
- Drop peptides that were only identified in one sample
```{r}
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
```
We keep `r nrow(pe[["peptideLog"]])` peptides upon filtering.
3. Normalization by median centering
```{r}
pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")
```
4. Summarization. We use the standard sumarisation in aggregateFeatures, which is a
robust summarisation method.
```{r,warning=FALSE}
pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")
```
Plot of preprocessed data
```{r}
pe[["peptideNorm"]] %>%
assay %>%
as.data.frame() %>%
gather(sample, intensity) %>%
mutate(genotype = colData(pe)[sample,"genotype"]) %>%
ggplot(aes(x = intensity,group = sample,color = genotype)) +
geom_density() +
ggtitle("Peptide-level")
pe[["protein"]] %>%
assay %>%
as.data.frame() %>%
gather(sample, intensity) %>%
mutate(genotype = colData(pe)[sample,"genotype"]) %>%
ggplot(aes(x = intensity,group = sample,color = genotype)) +
geom_density() +
ggtitle("Protein-level")
```
</p></details>
## Summarized data structure
### Design
```{r}
pe %>%
colData %>%
knitr::kable()
```
- WT vs KO
- 3 vs 3 repeats
### Summarized intensity matrix
```{r}
pe[["protein"]] %>% assay() %>% head() %>% knitr::kable()
```
- `r nrow(pe[["protein"]])` proteins
### Hypothesis testing: a single protein
```{r echo=FALSE}
if ("pi"%in%ls()) rm("pi")
kopvoeter<-function(x,y,angle=0,l=.2,cex.dot=.5,pch=19,col="black")
{
angle=angle/180*pi
points(x,y,cex=cex.dot,pch=pch,col=col)
lines(c(x,x+l*cos(-pi/2+angle)),c(y,y+l*sin(-pi/2+angle)),col=col)
lines(c(x+l/2*cos(-pi/2+angle),x+l/2*cos(-pi/2+angle)+l/4*cos(angle)),c(y+l/2*sin(-pi/2+angle),y+l/2*sin(-pi/2+angle)+l/4*sin(angle)),col=col)
lines(c(x+l/2*cos(-pi/2+angle),x+l/2*cos(-pi/2+angle)+l/4*cos(pi+angle)),c(y+l/2*sin(-pi/2+angle),y+l/2*sin(-pi/2+angle)+l/4*sin(pi+angle)),col=col)
lines(c(x+l*cos(-pi/2+angle),x+l*cos(-pi/2+angle)+l/2*cos(-pi/2+pi/4+angle)),c(y+l*sin(-pi/2+angle),y+l*sin(-pi/2+angle)+l/2*sin(-pi/2+pi/4+angle)),col=col)
lines(c(x+l*cos(-pi/2+angle),x+l*cos(-pi/2+angle)+l/2*cos(-pi/2-pi/4+angle)),c(y+l*sin(-pi/2+angle),y+l*sin(-pi/2+angle)+l/2*sin(-pi/2-pi/4+angle)),col=col)
}
par(mar=c(0,0,0,0),mai=c(0,0,0,0))
plot(0,0,xlab="",ylab="",xlim=c(0,10),ylim=c(0,10),col=0,xaxt="none",yaxt="none",axes=FALSE)
rect(0,6,10,10,border="red",lwd=2)
text(.5,8,"population",srt=90,col="red",cex=2)
symbols (3, 8, circles=1.2, col="red",add=TRUE,fg="red",inches=FALSE,lwd=2)
set.seed(330)
grid=seq(0,1,.01)
for (i in 1:50)
{
angle1=runif(n=1,min=0,max=360)
angle2=runif(n=1,min=0,max=360)
radius=sample(grid,prob=grid^2*pi/sum(grid^2*pi),size=1)
kopvoeter(3+radius*cos(angle1/180*pi),8+radius*sin(angle1/180*pi),angle=angle2)
}
text(7.5,8,"Effect of arginine def. in population",col="red",cex=1.2)
rect(0,0,10,4,border="blue",lwd=2)
text(.5,2,"sample",srt=90,col="blue",cex=2)
symbols (3, 2, circles=1.2, col="red",add=TRUE,fg="blue",inches=FALSE,lwd=2)
for (i in 0:1)
for (j in 0:2)
{
kopvoeter(2.5+j*(3.9-2.1)/4,1.5+i)
}
text(7.5,2,"Effect of arginine def. in sample",col="blue",cex=1.2)
arrows(3,5.9,3,4.1,col="black",lwd=3)
arrows(7,4.1,7,5.9,col="black",lwd=3)
text(1.5,5,"Exp. Design",col="black",cex=1.2)
text(8.5,5,"Estimation \n Inference ",col="black",cex=1.2)
text(7.5,.5,"Data exploration",col="black",cex=1.2)
```
#### T-test
$$
\log_2 \text{FC} = \bar{y}_{p1}-\bar{y}_{p2}
$$
$$
T_g=\frac{\log_2 \text{FC}}{\text{se}_{\log_2 \text{FC}}}
$$
$$
T_g=\frac{\widehat{\text{signal}}}{\widehat{\text{Noise}}}
$$
If we can assume equal variance in both treatment groups:
$$
\text{se}_{\log_2 \text{FC}}=\text{SD}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}
$$
```{r}
WP_003023392 <- data.frame(
intensity = assay(pe[["protein"]]["WP_003023392",]) %>% c(),
genotype = colData(pe)[,1])
WP_003023392 %>%
ggplot(aes(x=genotype,y=intensity)) +
geom_point() +
ggtitle("Protein WP_003023392")
```
```{r echo=FALSE}
lmHlp <- lm(intensity ~ genotype, data = WP_003023392)
```
$$
t=\frac{\log_2\widehat{\text{FC}}}{\text{se}_{\log_2\widehat{\text{FC}}}}=\frac{`r format(summary(lmHlp)$coef[2,1], digit = 3)`}{`r format(summary(lmHlp)$coef[2,2], digit = 3)`}=`r format(summary(lmHlp)$coef[2,3], digit = 3)`
$$
- Is t = `r format(summary(lmHlp)$coef[2,3], digit = 3)` indicating that
there is an effect?
- How likely is it to observe
t = `r format(summary(lmHlp)$coef[2,3], digit = 3)` when there is no effect of the argP KO on the protein expression?
#### Null hypothesis ($H_0$) and alternative hypothesis ($H_1$)
- With data we can never prove a hypothesis (falsification principle of Popper)
- With data we can only reject a hypothesis
- In general we start from *alternative hypothese* $H_1$: we want to show an effect of the KO on a protein
<center>
$H_1$: On average the protein abundance in WT is different from that in KO
</center>
- But, we will assess this by falsifying the opposite:
<center>
$H_0$: On average the protein abundance in WT is equal to that in KO<-
</center>
```{r}
t.test(intensity ~ genotype, data = WP_003023392, var.equal=TRUE)
```
- How likely is it to observe an equal or more extreme effect than the one observed in the sample when the null hypothesis is true?
- When we make assumptions about the distribution of our test statistic we can quantify this probability: *p-value*.
The p-value will only be calculated correctly if the underlying assumptions hold!
- When we repeat the experiment, the probability to observe a fold change for this gene that is more extreme than a `r format(2^abs(lmHlp$coef[2]),digits=3)` fold ($\log_2 FC=`r format(lmHlp$coef[2],digits=3)`$) down or up regulation by random change (if $H_0$ is true) is `r round(summary(lmHlp)$coef[2,4]*1e6,0)` out of 1 000 000.
- If the p-value is below a significance threshold $\alpha$ we reject the null hypothesis. *We control the probability on a false positive result at the $\alpha$-level (type I error)*
- Note, that the p-values are uniform under the null hypothesis, i.e. when $H_0$ is true all p-values are equally likely.
## Multiple hypothesis testing
- Consider testing DA for all $m=1066$ proteins simultaneously
- What if we assess each individual test at level $\alpha$?
$\rightarrow$ Probability to have a false positive (FP) among all m simultatenous
test $>>> \alpha= 0.05$
- Indeed for each non DA protein we have a probability of 5% to return a FP.
- In a typical experiment the majority of the proteins are non DA.
- So an upperbound of the expected FP is $m \times \alpha$ or $1066 \times 0.05=`r round(1066*0.05,0)`$.
$\rightarrow$ Hence, we are bound to call many false positive proteins each time we run the experiment.
### Multiple testing
#### Family-wise error rate
The family-wise error rate (FWER) addresses the multiple testing issue by no longer controlling the individual type I error for each protein, instead it controls:
\[
\text{FWER} =
\text{P}\left[FP \geq 1 \right].
\]
The Bonferroni method is widely used to control the type I error:
- assess each test at
\[\alpha_\text{adj}=\frac{\alpha}{m}\]
- or use adjusted p-values and compare them to $\alpha$:
\[p_\text{adj}=\text{min}\left(p \times m,1\right)\]
Problem, the method is very conservative!
#### False discovery rate
- FDR: Expected proportion of false positives on the total number of positives you return.
- An FDR of 1% means that on average we expect 1% false positive proteins in the list of proteins that are called significant.
The **False Discovery Proportion (FDP)** is the fraction of false positives that are returned, i.e.
\[
FDP = \frac{FP}{R}
\]
- However, this quantity cannot be observed because in practice we only know the number of proteins for which we rejected $H_0$, $R$.
- But, we do not know the number of false positives, $FP$.
Therefore, Benjamini and Hochberg, 1995, defined The **False Discovery Rate (FDR)** as
\[
\text{FDR} = \text{E}\left[\frac{FP}{R}\right] =\text{E}\left[\text{FDP}\right]
\]
the expected FDP.
- Controlling the FDR allows for more discoveries (i.e. longer lists with significant results), while the fraction of false discoveries among the significant results in well controlled on average. As a consequence, more of the true positive hypotheses will be detected.
#### Intuition of BH-FDR procedure
Consider $m = 1000$ tests
- Suppose that a researcher rejects all null hypotheses for which $p < 0.01$.
- If we use $p < 0.01$, we expect $0.01 \times m_0$ tests to return false positives.
- A conservative estimate of the number of false positives that we can expect can be obtained by considering that the null hypotheses are true for all features, $m_0 = m = 1000$.
- We then would expect $0.01 \times 1000 = 10$ false positives ($FP=10$).
- Suppose that the researcher found 200 genes with $p<0.01$ ($R=200$).
- The proportion of false positive results (FDP = false positive proportion) among the list of $R=200$ genes can then be estimated as
\[
\widehat{\text{FDP}}=\frac{FP}{R}=\frac{10}{200}=\frac{0.01 \times 1000}{200} = 0.05.
\]
#### Benjamini and Hochberg (1995) procedure for controlling the FDR at $\alpha$
1. Let $p_{(1)}\leq \ldots \leq p_{(m)}$ denote the ordered $p$-values.
2. Find the largest integer $k$ so that
$$
\frac{p_{(k)} \times m}{k} \leq \alpha
$$
$$\text{or}$$
$$
p_{(k)} \leq k \times \alpha/m
$$
3. If such a $k$ exists, reject the $k$ null hypotheses associated with $p_{(1)}, \ldots, p_{(k)}$.
Otherwise none of the null hypotheses is rejected.
The adjusted $p$-value (also known as the $q$-value in FDR literature):
$$
q_{(i)}=\tilde{p}_{(i)} = \min\left[\min_{j=i,\ldots, m}\left(m p_{(j)}/j\right), 1 \right].
$$
In the hypothetical example above: $k=200$, $p_{(k)}=0.01$, $m=1000$ and $\alpha=0.05$.
#### Francisella Example
<details><summary> Click to see code </summary><p>
```{r}
ttestMx <- function(y,group) {
test <- try(t.test(y[group],y[!group],var.equal=TRUE),silent=TRUE)
if(is(test,"try-error")) {
return(c(log2FC=NA,se=NA,tstat=NA,p=NA))
} else {
return(c(log2FC= (test$estimate%*%c(1,-1)),se=test$stderr,tstat=test$statistic,pval=test$p.value))
}
}
res <- apply(
assay(pe[["protein"]]),
1,
ttestMx,
group = colData(pe)$genotype=="D8") %>%
t
colnames(res) <- c("logFC","se","tstat","pval")
res <- res %>% as.data.frame %>% na.exclude %>% arrange(pval)
res$adjPval <- p.adjust(res$pval, "fdr")
alpha <- 0.05
res$adjAlphaForm <- paste0(1:nrow(res)," x ",alpha,"/",nrow(res))
res$adjAlpha <- alpha * (1:nrow(res))/nrow(res)
res$"pval < adjAlpha" <- res$pval < res$adjAlpha
res$"adjPval < alpha" <- res$adjPval < alpha
```
</p></details>
FWER: Bonferroni method:$\alpha_\text{adj} = \alpha/m = 0.05 / `r nrow(res)`= `r round(alpha/nrow(res),5)`$
```{r echo=FALSE}
head(res[,-c(2:3)],sum(res$adjPval < alpha)+2) %>% knitr::kable()
```
| ... | ... | ... | ... | ... | ... | ... | ... |
|WP_003040562 | 0.0039480| 0.9976429| 0.9985797|1065 x 0.05/1066 | 0.0499531|FALSE |FALSE
|WP_003041130 | 0.0002941| 0.9992812| 0.9992812|1066 x 0.05/1066 | 0.05|FALSE |FALSE |
#### Results
<details><summary> Click to see code </summary><p>
```{r}
volcanoT <- res %>%
ggplot(aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal()
```
</p></details>
```{r}
volcanoT
```
## Moderated Statistics
Problems with ordinary t-test
<details><summary> Click to see code </summary><p>
```{r}
problemPlots <- list()
problemPlots[[1]] <- res %>%
ggplot(aes(x = logFC, y = se, color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal()
for (i in 2:3)
{
problemPlots[[i]] <- colData(pe) %>%
as.data.frame %>%
mutate(intensity = pe[["protein"]][rownames(res)[i],] %>%
assay %>%
c) %>%
ggplot(aes(x=genotype,y=intensity)) +
geom_point() +
ylim(-3,0) +
ggtitle(rownames(res)[i])
}
```
</p></details>
```{r}
problemPlots
```
A general class of moderated test statistics is given by
\[
T_g^{mod} = \frac{\bar{Y}_{g1} - \bar{Y}_{g2}}{C \quad \tilde{S}_g} ,
\]
where $\tilde{S}_g$ is a moderated standard deviation estimate.
- $C$ is a constant depending on the design e.g. $\sqrt{1/{n_1}+1/n_2}$ for a t-test and of another form for linear models.
- $\tilde{S}_g=S_g+S_0$: add small positive constant to denominator of t-statistic.
- This can be adopted in Perseus.
<details><summary> Click to see code </summary><p>
```{r}
simI<-sapply(res$se/sqrt(1/3+1/3),function(n,mean,sd) rnorm(n,mean,sd),n=6,mean=0) %>% t
resSim <- apply(
simI,
1,
ttestMx,
group = colData(pe)$genotype=="D8") %>%
t
colnames(resSim) <- c("logFC","se","tstat","pval")
resSim <- as.data.frame(resSim)
tstatSimPlot <- resSim %>%
ggplot(aes(x=tstat)) +
geom_histogram(aes(y=..density.., fill=..count..),bins=30) +
stat_function(fun=dt,
color="red",
args=list(df=4)) +
ylim(0,.6) +
ggtitle("t-statistic")
resSim$C <- sqrt(1/3+1/3)
resSim$sd <- resSim$se/resSim$C
tstatSimPerseus <- resSim %>%
ggplot(aes(x=logFC/((sd+.1)*C))) +
geom_histogram(aes(y=..density.., fill=..count..),bins=30) +
stat_function(fun=dt,
color="red",
args=list(df=4)) +
ylim(0,.6) +
ggtitle("Persues")
```
</p></details>
```{r}
gridExtra::grid.arrange(tstatSimPlot,tstatSimPerseus,nrow=1)
```
- The choice of $S_0$ in Perseus is ad hoc and the t-statistic is no-longer t-distributed.
- Permutation test, but is difficult for more complex designs.
- Allows for Data Dredging because user can choose $S_0$
### Empirical Bayes
```{r echo=FALSE, out.width="50%"}
knitr::include_graphics("./figures/limmaShrinkage.png")
```
Figure courtesy to Rafael Irizarry
$$
T_g^{mod} = \frac{\bar{Y}_{g1} - \bar{Y}_{g2}}{C \quad \tilde{S}_g} ,
$$
- **empirical Bayes** theory provides formal framework for borrowing strength across proteins,
- Implemented in popular bioconductor package **limma** and **msqrob2**
$$
\tilde{S}_g=\sqrt{\frac{d_gS_g^2+d_0S_0^2}{d_g+d_0}},
$$
- $S_0^2$: common variance (over all proteins)
- Moderated t-statistic is t-distributed with $d_0+d_g$ degrees of freedom.
- Note that the degrees of freedom increase by borrowing strength across proteins!
<details><summary> Click to see the code </summary><p>
1. We model the protein level expression values using the `msqrob` function.
By default `msqrob2` estimates the model parameters using robust regression.
We will model the data with a different group mean for every genotype.
The group is incoded in the variable `genotype` of the colData.
We can specify this model by using a formula with the factor `genotype` as its predictor:
`formula = ~genotype`.
Note, that a formula always starts with a symbol '~'.
```{r warning=FALSE}
pe <- msqrob(object = pe, i = "protein", formula = ~genotype)
```
2. Inference
We first explore the design of the model that we specified using the the package `ExploreModelMatrix`
```{r}
library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~genotype)$plotlist[[1]]
```
We have two model parameters, the (Intercept) and genotypeD8.
This results in a model with two group means:
1. For the wild type (WT) the expected value (mean) of the log2 transformed intensity y for a protein will be modelled using
$$\text{E}[Y\vert \text{genotype}=\text{WT}] = \text{(Intercept)}$$
1. For the knockout genotype D8 the expected value (mean) of the log2 transformed intensity y for a protein will be modelled using
$$\text{E}[Y\vert \text{genotype}=\text{D8}] = \text{(Intercept)} + \text{genotypeD8}$$
The average log2FC between D8 and WT is thus
$$\log_2\text{FC}_{D8-WT}= \text{E}[Y\vert \text{genotype}=\text{D8}] - \text{E}[Y\vert \text{genotype}=\text{WT}] = \text{genotypeD8}
$$
Hence, assessing the null hypothesis that there is no differential abundance between D8 and WT can be reformulated as
$$H_0: \text{genotypeD8}=0$$
We can implement a hypothesis test for each protein in msqrob2 using the code below:
```{r}
L <- makeContrast("genotypeD8 = 0", parameterNames = c("genotypeD8"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)
```
We can show the list with all significant DE proteins at the 5% FDR using
```{r}
rowData(pe[["protein"]])$genotypeD8 %>%
arrange(pval) %>%
filter(adjPval<0.05)
```
We can also visualise the results using a volcanoplot
```{r}
volcano <- ggplot(
rowData(pe[["protein"]])$genotypeD8,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)
) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle("msqrob2")
```
</p></details>
```{r}
gridExtra::grid.arrange(volcanoT + xlim(-3,3) + ggtitle("ordinary t-test")
,volcano + xlim(-3,3)
,nrow=2)
```
- The volcano plot opens up when using the EB variance estimator
- Borrowing strength to estimate the variance using empirical Bayes solves the issue of returning proteins with a low fold change as significant due to a low variance.
### Shrinkage of the variance and moderated t-statistics
```{r}
qplot(
sapply(rowData(pe[["protein"]])$msqrobModels,getSigma),
sapply(rowData(pe[["protein"]])$msqrobModels,getSigmaPosterior)) +
xlab("SD") +
ylab("moderated SD") +
geom_abline(intercept = 0,slope = 1) +
geom_hline(yintercept = )
```
- Small variances are shrunken towards the common variance resulting in large EB variance estimates
- Large variances are shrunken towards the common variance resulting in smaller EB variance estimates
- Pooled degrees of freedom of the EB variance estimator are larger because information is borrowed across proteins to estimate the variance
## Plots
```{r}
sigNames <- rowData(pe[["protein"]])$genotypeD8 %>%
rownames_to_column("protein") %>%
filter(adjPval < 0.05) %>%
pull(protein)
heatmap(assay(pe[["protein"]])[sigNames, ])
```
```{r, warning=FALSE, message=FALSE}
for (protName in sigNames)
{
pePlot <- pe[protName, , c("peptideNorm", "protein")]
pePlotDf <- data.frame(longFormat(pePlot))
pePlotDf$assay <- factor(pePlotDf$assay,
levels = c("peptideNorm", "protein")
)
pePlotDf$genotype <- as.factor(colData(pePlot)[pePlotDf$colname, "genotype"])
# plotting
p1 <- ggplot(
data = pePlotDf,
aes(x = colname, y = value, group = rowname)
) +
geom_line() +
geom_point() +
facet_grid(~assay) +
theme(axis.text.x = element_text(angle = 70, hjust = 1, vjust = 0.5)) +
ggtitle(protName)
print(p1)
# plotting 2
p2 <- ggplot(pePlotDf, aes(x = colname, y = value, fill = genotype)) +
geom_boxplot(outlier.shape = NA) +
geom_point(
position = position_jitter(width = .1),
aes(shape = rowname)
) +
scale_shape_manual(values = 1:nrow(pePlotDf)) +
labs(title = protName, x = "sample", y = "peptide intensity (log2)") +
theme(axis.text.x = element_text(angle = 70, hjust = 1, vjust = 0.5)) +
facet_grid(~assay)
print(p2)
}
```
# Experimental Design
## Sample size
$$
\log_2 \text{FC} = \bar{y}_{p1}-\bar{y}_{p2}
$$
$$
T_g=\frac{\log_2 \text{FC}}{\text{se}_{\log_2 \text{FC}}}
$$
$$
T_g=\frac{\widehat{\text{signal}}}{\widehat{\text{Noise}}}
$$
If we can assume equal variance in both treatment groups:
$$
\text{se}_{\log_2 \text{FC}}=\text{SD}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}
$$
$\rightarrow$ if number of bio-repeats increases we have a higher power!
- cfr. Study of tamoxifen treated Estrogen Recepter (ER) positive breast cancer patients
## Blocking
\[\sigma^2= \sigma^2_{bio}+\sigma^2_\text{lab} +\sigma^2_\text{extraction} + \sigma^2_\text{run} + \ldots\]
- Biological: fluctuations in protein level between mice, fluctations in protein level between cells, ...
- Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, ...
## Nature methods: Points of significance - Blocking
[https://www.nature.com/articles/nmeth.3005.pdf](https://www.nature.com/articles/nmeth.3005.pdf)
## Mouse example
```{r echo=FALSE, out.width="50%"}
knitr::include_graphics("./figures/mouseTcell_RCB_design.png")
```
Duguet et al. (2017) MCP 16(8):1416-1432. doi: 10.1074/mcp.m116.062745
- All treatments of interest are present within block!
- We can estimate the effect of the treatment within block!
- We can isolate the between block variability from the analysis using linear model:
$$
y \sim \text{type} + \text{mouse}
$$
- Not possible with Perseus!
### Assess the impact of blocking in the tutorial session!
- Completely randomized design with only one cell type per mouse (Treg and Tconv)
$$\updownarrow$$
- Randomized complete block design assessing Treg and Tconv on each mouse