-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathboard.py
1049 lines (882 loc) · 36.4 KB
/
board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
import numpy as np
#Implements legal moves without superko
class Board:
EMPTY = 0
BLACK = 1
WHITE = 2
WALL = 3
ZOBRIST_STONE = [[],[],[],[]]
ZOBRIST_PLA = []
ZOBRIST_RAND = random.Random()
ZOBRIST_RAND.seed(123987456)
PASS_LOC = 0
for i in range((19+1)*(19+2)+1):
ZOBRIST_STONE[BLACK].append(ZOBRIST_RAND.getrandbits(64))
ZOBRIST_STONE[WHITE].append(ZOBRIST_RAND.getrandbits(64))
for i in range(4):
ZOBRIST_PLA.append(ZOBRIST_RAND.getrandbits(64))
def __init__(self,size,copy_other=None):
if size < 2 or size > 39:
raise ValueError("Invalid board size: " + str(size))
self.size = size
self.arrsize = (size+1)*(size+2)+1
self.dy = size+1
self.adj = [-self.dy,-1,1,self.dy]
self.diag = [-self.dy-1,-self.dy+1,self.dy-1,self.dy+1]
if copy_other is not None:
self.pla = copy_other.pla
self.board = np.copy(copy_other.board)
self.group_head = np.copy(copy_other.group_head)
self.group_stone_count = np.copy(copy_other.group_stone_count)
self.group_liberty_count = np.copy(copy_other.group_liberty_count)
self.group_next = np.copy(copy_other.group_next)
self.group_prev = np.copy(copy_other.group_prev)
self.zobrist = copy_other.zobrist
self.simple_ko_point = copy_other.simple_ko_point
else:
self.pla = Board.BLACK
self.board = np.zeros(shape=(self.arrsize), dtype=np.int8)
self.group_head = np.zeros(shape=(self.arrsize), dtype=np.int16)
self.group_stone_count = np.zeros(shape=(self.arrsize), dtype=np.int16)
self.group_liberty_count = np.zeros(shape=(self.arrsize), dtype=np.int16)
self.group_next = np.zeros(shape=(self.arrsize), dtype=np.int16)
self.group_prev = np.zeros(shape=(self.arrsize), dtype=np.int16)
self.zobrist = 0
self.simple_ko_point = None
for i in range(-1,size+1):
self.board[self.loc(i,-1)] = Board.WALL
self.board[self.loc(i,size)] = Board.WALL
self.board[self.loc(-1,i)] = Board.WALL
self.board[self.loc(size,i)] = Board.WALL
#More-easily catch errors
self.group_head[0] = -1
self.group_next[0] = -1
self.group_prev[0] = -1
def copy(self):
return Board(self.size,copy_other=self)
@staticmethod
def get_opp(pla):
return 3-pla
@staticmethod
def loc_static(x,y,size):
return (x+1) + (size+1)*(y+1)
def loc(self,x,y):
return (x+1) + self.dy*(y+1)
def loc_x(self,loc):
return (loc % self.dy)-1
def loc_y(self,loc):
return (loc // self.dy)-1
def is_adjacent(self,loc1,loc2):
return loc1 == loc2 + self.adj[0] or loc1 == loc2 + self.adj[1] or loc1 == loc2 + self.adj[2] or loc1 == loc2 + self.adj[3]
def pos_zobrist(self):
return self.zobrist
def sit_zobrist(self):
return self.zobrist ^ Board.ZOBRIST_PLA[self.pla]
def num_liberties(self,loc):
if self.board[loc] == Board.EMPTY or self.board[loc] == Board.WALL:
return 0
return self.group_liberty_count[self.group_head[loc]]
def is_simple_eye(self,pla,loc):
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
if (self.board[adj0] != pla and self.board[adj0] != Board.WALL) or \
(self.board[adj1] != pla and self.board[adj1] != Board.WALL) or \
(self.board[adj2] != pla and self.board[adj2] != Board.WALL) or \
(self.board[adj3] != pla and self.board[adj3] != Board.WALL):
return False
opp = Board.get_opp(pla)
opp_corners = 0
diag0 = loc + self.diag[0]
diag1 = loc + self.diag[1]
diag2 = loc + self.diag[2]
diag3 = loc + self.diag[3]
if self.board[diag0] == opp:
opp_corners += 1
if self.board[diag1] == opp:
opp_corners += 1
if self.board[diag2] == opp:
opp_corners += 1
if self.board[diag3] == opp:
opp_corners += 1
if opp_corners >= 2:
return False
if opp_corners <= 0:
return True
against_wall = (
self.board[adj0] == Board.WALL or \
self.board[adj1] == Board.WALL or \
self.board[adj2] == Board.WALL or \
self.board[adj3] == Board.WALL
)
if against_wall:
return False
return True
def would_be_legal(self,pla,loc):
if pla != Board.BLACK and pla != Board.WHITE:
return False
if loc == Board.PASS_LOC:
return True
if not self.is_on_board(loc):
return False
if self.board[loc] != Board.EMPTY:
return False
if self.would_be_suicide(pla,loc):
return False
if loc == self.simple_ko_point:
return False
return True
def would_be_suicide(self,pla,loc):
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
opp = Board.get_opp(pla)
#If empty or capture, then not suicide
if self.board[adj0] == Board.EMPTY or (self.board[adj0] == opp and self.group_liberty_count[self.group_head[adj0]] == 1) or \
self.board[adj1] == Board.EMPTY or (self.board[adj1] == opp and self.group_liberty_count[self.group_head[adj1]] == 1) or \
self.board[adj2] == Board.EMPTY or (self.board[adj2] == opp and self.group_liberty_count[self.group_head[adj2]] == 1) or \
self.board[adj3] == Board.EMPTY or (self.board[adj3] == opp and self.group_liberty_count[self.group_head[adj3]] == 1):
return False
#If connects to own stone with enough liberties, then not suicide
if self.board[adj0] == pla and self.group_liberty_count[self.group_head[adj0]] > 1 or \
self.board[adj1] == pla and self.group_liberty_count[self.group_head[adj1]] > 1 or \
self.board[adj2] == pla and self.group_liberty_count[self.group_head[adj2]] > 1 or \
self.board[adj3] == pla and self.group_liberty_count[self.group_head[adj3]] > 1:
return False
return True
#Returns the number of liberties a new stone placed here would have, or maxLibs if it would be >= maxLibs.
def get_liberties_after_play(self,pla,loc,maxLibs):
opp = Board.get_opp(pla)
libs = []
capturedGroupHeads = []
#First, count immediate liberties and groups that would be captured
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == Board.EMPTY:
libs.append(adj)
if len(libs) >= maxLibs:
return maxLibs
elif self.board[adj] == opp and self.num_liberties(adj) == 1:
libs.append(adj)
if len(libs) >= maxLibs:
return maxLibs
head = self.group_head[adj]
if head not in capturedGroupHeads:
capturedGroupHeads.append(head)
def wouldBeEmpty(possibleLib):
if self.board[possibleLib] == Board.EMPTY:
return True
elif self.board[possibleLib] == opp:
return (self.group_head[possibleLib] in capturedGroupHeads)
return False
#Next, walk through all stones of all surrounding groups we would connect with and count liberties, avoiding overlap.
connectingGroupHeads = []
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == pla:
head = self.group_head[adj]
if head not in connectingGroupHeads:
connectingGroupHeads.append(head)
cur = adj
while True:
for k in range(4):
possibleLib = cur + self.adj[k]
if possibleLib != loc and wouldBeEmpty(possibleLib) and possibleLib not in libs:
libs.append(possibleLib)
if len(libs) >= maxLibs:
return maxLibs
cur = self.group_next[cur]
if cur == adj:
break
return len(libs)
def to_string(self):
def get_piece(x,y):
loc = self.loc(x,y)
if self.board[loc] == Board.BLACK:
return 'X '
elif self.board[loc] == Board.WHITE:
return 'O '
elif (x == 3 or x == self.size/2 or x == self.size-1-3) and (y == 3 or y == self.size/2 or y == self.size-1-3):
return '* '
else:
return '. '
return "\n".join("".join(get_piece(x,y) for x in range(self.size)) for y in range(self.size))
def to_liberty_string(self):
def get_piece(x,y):
loc = self.loc(x,y)
if self.board[loc] == Board.BLACK or self.board[loc] == Board.WHITE:
libs = self.group_liberty_count[self.group_head[loc]]
if libs <= 9:
return str(libs) + ' '
else:
return '@ '
elif (x == 3 or x == self.size/2 or x == self.size-1-3) and (y == 3 or y == self.size/2 or y == self.size-1-3):
return '* '
else:
return '. '
return "\n".join("".join(get_piece(x,y) for x in range(self.size)) for y in range(self.size))
def set_pla(self,pla):
self.pla = pla
def is_on_board(self,loc):
return loc >= 0 and loc < self.arrsize and self.board[loc] != Board.WALL
#Set a given location with error checking. Suicide setting allowed.
def set_stone(self,pla,loc):
if pla != Board.EMPTY and pla != Board.BLACK and pla != Board.WHITE:
raise ValueError("Invalid pla for board.set")
if not self.is_on_board(loc):
raise ValueError("Invalid loc for board.set")
if self.board[loc] == pla:
pass
elif self.board[loc] == Board.EMPTY:
self.add_unsafe(pla,loc)
elif pla == Board.EMPTY:
self.remove_single_stone_unsafe(loc)
else:
self.remove_single_stone_unsafe(loc)
self.add_unsafe(pla,loc)
#Clear any ko restrictions
self.simple_ko_point = None
#Play a stone at the given location, with non-superko legality checking and updating the pla and simple ko point
def play(self,pla,loc):
if pla != Board.BLACK and pla != Board.WHITE:
raise ValueError("Invalid pla for board.play")
if loc != Board.PASS_LOC:
if not self.is_on_board(loc):
raise ValueError("Invalid loc for board.set")
if self.board[loc] != Board.EMPTY:
raise ValueError("Location is nonempty")
if self.would_be_suicide(pla,loc):
raise ValueError("Move would be illegal suicide")
if loc == self.simple_ko_point:
raise ValueError("Move would be illegal simple ko recapture")
self.playUnsafe(pla,loc)
def playUnsafe(self,pla,loc):
if loc == Board.PASS_LOC:
self.simple_ko_point = None
self.pla = Board.get_opp(pla)
else:
self.add_unsafe(pla,loc)
self.pla = Board.get_opp(pla)
def playRecordedUnsafe(self,pla,loc):
capDirs = []
opp = Board.get_opp(pla)
old_simple_ko_point = self.simple_ko_point
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == opp and self.group_liberty_count[self.group_head[adj]] == 1:
capDirs.append(i)
self.playUnsafe(pla,loc)
return (pla,loc,old_simple_ko_point,capDirs)
def undo(self,record):
(pla,loc,simple_ko_point,capDirs) = record
opp = Board.get_opp(pla)
self.simple_ko_point = simple_ko_point
self.pla = pla
if loc == Board.PASS_LOC:
return
#Re-fill stones in all captured directions
for capdir in capDirs:
adj = loc + self.adj[capdir]
if self.board[adj] == Board.EMPTY:
self.floodFillStones(opp,adj)
#Delete the stone played here.
self.zobrist ^= Board.ZOBRIST_STONE[pla][loc]
self.board[loc] = Board.EMPTY
#Zero out stuff in preparation for rebuilding
head = self.group_head[loc]
stone_count = self.group_stone_count[head]
self.group_stone_count[head] = 0
self.group_liberty_count[head] = 0
#Uneat enemy liberties
self.changeSurroundingLiberties(loc,Board.get_opp(pla),+1)
#If this was not a single stone, we need to recompute the chain from scratch
if stone_count > 1:
#Run through the whole chain and make their heads point to nothing
cur = loc
while True:
self.group_head[cur] = Board.PASS_LOC
cur = self.group_next[cur]
if cur == loc:
break
#Rebuild each chain adjacent now
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == pla and self.group_head[adj] == Board.PASS_LOC:
self.rebuildChain(pla,adj)
self.group_head[loc] = 0
self.group_next[loc] = 0
self.group_prev[loc] = 0
#Add a chain of the given player to the given region of empty space, floodfilling it.
#Assumes that this region does not border any chains of the desired color already
def floodFillStones(self,pla,loc):
head = loc
self.group_liberty_count[head] = 0
self.group_stone_count[head] = 0
#Add a chain with links front <-> ... <-> head <-> head with all head pointers towards head
front = self.floodFillStonesHelper(head, head, head, pla)
#Now, we make head point to front, and that completes the circle!
self.group_next[head] = front
self.group_prev[front] = head
#Floodfill a chain of the given color into this region of empty spaces
#Make the specified loc the head for all the chains and updates the chainData of head with the number of stones.
#Does NOT connect the stones into a circular list. Rather, it produces an linear linked list with the tail pointing
#to tailTarget, and returns the head of the list. The tail is guaranteed to be loc.
def floodFillStonesHelper(self, head, tailTarget, loc, pla):
self.board[loc] = pla
self.zobrist ^= Board.ZOBRIST_STONE[pla][loc]
self.group_head[loc] = head
self.group_stone_count[head] += 1
self.group_next[loc] = tailTarget
self.group_prev[tailTarget] = loc
#Eat enemy liberties
self.changeSurroundingLiberties(loc,Board.get_opp(pla),-1)
#Recursively add stones around us.
nextTailTarget = loc
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == Board.EMPTY:
nextTailTarget = self.floodFillStonesHelper(head,nextTailTarget,adj,pla)
return nextTailTarget
#Floods through a chain of the specified player already on the board
#rebuilding its links and counting its liberties as we go.
#Requires that all their heads point towards
#some invalid location, such as PASS_LOC or a location not of color.
#The head of the chain will be loc.
def rebuildChain(self,pla,loc):
head = loc
self.group_liberty_count[head] = 0
self.group_stone_count[head] = 0
#Rebuild chain with links front <-> ... <-> head <-> head with all head pointers towards head
front = self.rebuildChainHelper(head, head, head, pla)
#Now, we make head point to front, and that completes the circle!
self.group_next[head] = front
self.group_prev[front] = head
#Does same thing as addChain, but floods through a chain of the specified color already on the board
#rebuilding its links and also counts its liberties as we go. Requires that all their heads point towards
#some invalid location, such as NULL_LOC or a location not of color.
def rebuildChainHelper(self, head, tailTarget, loc, pla):
#Count new liberties
for dloc in self.adj:
if self.board[loc+dloc] == Board.EMPTY and not self.is_group_adjacent(head,loc+dloc):
self.group_liberty_count[head] += 1
#Add stone here to the chain by setting its head
self.group_head[loc] = head
self.group_stone_count[head] += 1
self.group_next[loc] = tailTarget
self.group_prev[tailTarget] = loc
#Recursively add stones around us.
nextTailTarget = loc
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] == pla and self.group_head[adj] != head:
nextTailTarget = self.rebuildChainHelper(head,nextTailTarget,adj,pla)
return nextTailTarget
#Add a stone, assumes that the location is empty without checking
def add_unsafe(self,pla,loc):
opp = Board.get_opp(pla)
#Put the stone down
self.board[loc] = pla
self.zobrist ^= Board.ZOBRIST_STONE[pla][loc]
#Initialize the group for that stone
self.group_head[loc] = loc
self.group_stone_count[loc] = 1
liberties = 0
for dloc in self.adj:
if self.board[loc+dloc] == Board.EMPTY:
liberties += 1
self.group_liberty_count[loc] = liberties
self.group_next[loc] = loc
self.group_prev[loc] = loc
#Fill surrounding liberties of all adjacent groups
#Carefully avoid doublecounting
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
if self.board[adj0] == Board.BLACK or self.board[adj0] == Board.WHITE:
self.group_liberty_count[self.group_head[adj0]] -= 1
if self.board[adj1] == Board.BLACK or self.board[adj1] == Board.WHITE:
if self.group_head[adj1] != self.group_head[adj0]:
self.group_liberty_count[self.group_head[adj1]] -= 1
if self.board[adj2] == Board.BLACK or self.board[adj2] == Board.WHITE:
if self.group_head[adj2] != self.group_head[adj0] and \
self.group_head[adj2] != self.group_head[adj1]:
self.group_liberty_count[self.group_head[adj2]] -= 1
if self.board[adj3] == Board.BLACK or self.board[adj3] == Board.WHITE:
if self.group_head[adj3] != self.group_head[adj0] and \
self.group_head[adj3] != self.group_head[adj1] and \
self.group_head[adj3] != self.group_head[adj2]:
self.group_liberty_count[self.group_head[adj3]] -= 1
#Merge groups
if self.board[adj0] == pla:
self.merge_unsafe(loc,adj0)
if self.board[adj1] == pla:
self.merge_unsafe(loc,adj1)
if self.board[adj2] == pla:
self.merge_unsafe(loc,adj2)
if self.board[adj3] == pla:
self.merge_unsafe(loc,adj3)
#Resolve captures
opp_stones_captured = 0
caploc = 0
if self.board[adj0] == opp and self.group_liberty_count[self.group_head[adj0]] == 0:
opp_stones_captured += self.group_stone_count[self.group_head[adj0]]
caploc = adj0
self.remove_unsafe(adj0)
if self.board[adj1] == opp and self.group_liberty_count[self.group_head[adj1]] == 0:
opp_stones_captured += self.group_stone_count[self.group_head[adj1]]
caploc = adj1
self.remove_unsafe(adj1)
if self.board[adj2] == opp and self.group_liberty_count[self.group_head[adj2]] == 0:
opp_stones_captured += self.group_stone_count[self.group_head[adj2]]
caploc = adj2
self.remove_unsafe(adj2)
if self.board[adj3] == opp and self.group_liberty_count[self.group_head[adj3]] == 0:
opp_stones_captured += self.group_stone_count[self.group_head[adj3]]
caploc = adj3
self.remove_unsafe(adj3)
if self.group_liberty_count[self.group_head[loc]] == 0:
self.remove_unsafe(loc)
#Update ko point for legality checking
if opp_stones_captured == 1 and \
self.group_stone_count[self.group_head[loc]] == 1 and \
self.group_liberty_count[self.group_head[loc]] == 1:
self.simple_ko_point = caploc
else:
self.simple_ko_point = None
#Apply the specified delta to the liberties of all adjacent groups of the specified color
def changeSurroundingLiberties(self,loc,pla,delta):
#Carefully avoid doublecounting
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
if self.board[adj0] == pla:
self.group_liberty_count[self.group_head[adj0]] += delta
if self.board[adj1] == pla:
if self.group_head[adj1] != self.group_head[adj0]:
self.group_liberty_count[self.group_head[adj1]] += delta
if self.board[adj2] == pla:
if self.group_head[adj2] != self.group_head[adj0] and \
self.group_head[adj2] != self.group_head[adj1]:
self.group_liberty_count[self.group_head[adj2]] += delta
if self.board[adj3] == pla:
if self.group_head[adj3] != self.group_head[adj0] and \
self.group_head[adj3] != self.group_head[adj1] and \
self.group_head[adj3] != self.group_head[adj2]:
self.group_liberty_count[self.group_head[adj3]] += delta
def countImmediateLiberties(self,loc):
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
count = 0
if self.board[adj0] == Board.EMPTY:
count += 1
if self.board[adj1] == Board.EMPTY:
count += 1
if self.board[adj2] == Board.EMPTY:
count += 1
if self.board[adj3] == Board.EMPTY:
count += 1
return count
def is_group_adjacent(self,head,loc):
return (
self.group_head[loc+self.adj[0]] == head or \
self.group_head[loc+self.adj[1]] == head or \
self.group_head[loc+self.adj[2]] == head or \
self.group_head[loc+self.adj[3]] == head
)
#Helper, merge two groups assuming they're owned by the same player and adjacent
def merge_unsafe(self,loc0,loc1):
if self.group_stone_count[self.group_head[loc0]] >= self.group_stone_count[self.group_head[loc1]]:
parent = loc0
child = loc1
else:
child = loc0
parent = loc1
phead = self.group_head[parent]
chead = self.group_head[child]
if phead == chead:
return
#Walk the child group assigning the new head and simultaneously counting liberties
new_stone_count = self.group_stone_count[phead] + self.group_stone_count[chead]
new_liberties = self.group_liberty_count[phead]
loc = child
while True:
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
#Any adjacent empty space is a new liberty as long as it isn't adjacent to the parent
if self.board[adj0] == Board.EMPTY and not self.is_group_adjacent(phead,adj0):
new_liberties += 1
if self.board[adj1] == Board.EMPTY and not self.is_group_adjacent(phead,adj1):
new_liberties += 1
if self.board[adj2] == Board.EMPTY and not self.is_group_adjacent(phead,adj2):
new_liberties += 1
if self.board[adj3] == Board.EMPTY and not self.is_group_adjacent(phead,adj3):
new_liberties += 1
#Now assign the new parent head to take over the child (this also
#prevents double-counting liberties)
self.group_head[loc] = phead
#Advance around the linked list
loc = self.group_next[loc]
if loc == child:
break
#Zero out the old head
self.group_stone_count[chead] = 0
self.group_liberty_count[chead] = 0
#Update the new head
self.group_stone_count[phead] = new_stone_count
self.group_liberty_count[phead] = new_liberties
#Combine the linked lists
plast = self.group_prev[phead]
clast = self.group_prev[chead]
self.group_next[clast] = phead
self.group_next[plast] = chead
self.group_prev[chead] = plast
self.group_prev[phead] = clast
#Remove all stones in a group
def remove_unsafe(self,group):
head = self.group_head[group]
pla = self.board[group]
opp = Board.get_opp(pla)
#Walk all the stones in the group and delete them
loc = group
while True:
#Add a liberty to all surrounding opposing groups, taking care to avoid double counting
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
if self.board[adj0] == opp:
self.group_liberty_count[self.group_head[adj0]] += 1
if self.board[adj1] == opp:
if self.group_head[adj1] != self.group_head[adj0]:
self.group_liberty_count[self.group_head[adj1]] += 1
if self.board[adj2] == opp:
if self.group_head[adj2] != self.group_head[adj0] and \
self.group_head[adj2] != self.group_head[adj1]:
self.group_liberty_count[self.group_head[adj2]] += 1
if self.board[adj3] == opp:
if self.group_head[adj3] != self.group_head[adj0] and \
self.group_head[adj3] != self.group_head[adj1] and \
self.group_head[adj3] != self.group_head[adj2]:
self.group_liberty_count[self.group_head[adj3]] += 1
next_loc = self.group_next[loc]
#Zero out all the stuff
self.board[loc] = Board.EMPTY
self.zobrist ^= Board.ZOBRIST_STONE[opp][loc]
self.group_head[loc] = 0
self.group_next[loc] = 0
self.group_prev[loc] = 0
#Advance around the linked list
loc = next_loc
if loc == group:
break
#Zero out the head
self.group_stone_count[head] = 0
self.group_liberty_count[head] = 0
#Remove a single stone
def remove_single_stone_unsafe(self,rloc):
pla = self.board[rloc]
#Record all the stones in the group
stones = []
loc = rloc
while True:
stones.append(loc)
loc = self.group_next[loc]
if loc == rloc:
break
#Remove them all
self.remove_unsafe(rloc)
#Then add them back one by one
for loc in stones:
if loc != rloc:
self.add_unsafe(pla,loc)
#Helper, find liberties of group at loc. Fills in buf.
def findLiberties(self, loc, buf):
cur = loc
while True:
for i in range(4):
lib = cur + self.adj[i]
if self.board[lib] == Board.EMPTY:
if lib not in buf:
buf.append(lib)
cur = self.group_next[cur]
if cur == loc:
break
#Helper, find captures that gain liberties for the group at loc. Fills in buf
def findLibertyGainingCaptures(self, loc, buf):
pla = self.board[loc]
opp = Board.get_opp(pla)
#For performance, avoid checking for captures on any chain twice
chainHeadsChecked = []
cur = loc
while True:
for i in range(4):
adj = cur + self.adj[i]
if self.board[adj] == opp:
head = self.group_head[adj]
if self.group_liberty_count[head] == 1:
if head not in chainHeadsChecked:
#Capturing moves are precisely the liberties of the groups around us with 1 liberty.
self.findLiberties(adj, buf)
chainHeadsChecked.append(head)
cur = self.group_next[cur]
if cur == loc:
break
#Helper, does the group at loc have at least one opponent group adjacent to it in atari?
def hasLibertyGainingCaptures(self, loc):
pla = self.board[loc]
opp = Board.get_opp(pla)
cur = loc
while True:
for i in range(4):
adj = cur + self.adj[i]
if self.board[adj] == opp:
head = self.group_head[adj]
if self.group_liberty_count[head] == 1:
return True
cur = self.group_next[cur]
if cur == loc:
break
return False
def wouldBeKoCapture(self, loc, pla):
if self.board[loc] == Board.EMPTY:
return False
#Check that surounding points are are all opponent owned and exactly one of them is capturable
opp = Board.get_opp(pla);
oppCapturableLoc = None
for i in range(4):
adj = loc + self.adj[i]
if self.board[adj] != Board.WALL and self.board[adj] != opp:
return False
if self.board[adj] == opp and self.group_liberty_count[self.group_head[adj]] == 1:
if oppCapturableLoc is not None:
return False
oppCapturableLoc = adj
if oppCapturableLoc is None:
return False
#Check that the capturable loc has exactly one stone
if self.group_stone_count[self.group_head[oppCapturableLoc]] != 1:
return False
return True
def countHeuristicConnectionLiberties(self,loc,pla):
adj0 = loc + self.adj[0]
adj1 = loc + self.adj[1]
adj2 = loc + self.adj[2]
adj3 = loc + self.adj[3]
count = 0.0
if self.board[adj0] == pla:
count += max(0.0,self.group_liberty_count[self.group_head[adj0]]-1.5)
if self.board[adj1] == pla:
count += max(0.0,self.group_liberty_count[self.group_head[adj1]]-1.5)
if self.board[adj2] == pla:
count += max(0.0,self.group_liberty_count[self.group_head[adj2]]-1.5)
if self.board[adj3] == pla:
count += max(0.0,self.group_liberty_count[self.group_head[adj3]]-1.5)
return count
def searchIsLadderCapturedAttackerFirst2Libs(self,loc):
if not self.is_on_board(loc):
return []
if self.board[loc] != Board.BLACK and self.board[loc] != Board.WHITE:
return []
if self.group_liberty_count[self.group_head[loc]] != 2:
return []
#Make it so that pla is always the defender
pla = self.board[loc]
opp = Board.get_opp(pla)
moves = []
self.findLiberties(loc,moves)
assert(len(moves) == 2)
move0 = moves[0]
move1 = moves[1]
move0Works = False
move1Works = False
if self.would_be_legal(opp,move0):
record = self.playRecordedUnsafe(opp,move0)
move0Works = self.searchIsLadderCaptured(loc,True);
self.undo(record)
if self.would_be_legal(opp,move1):
record = self.playRecordedUnsafe(opp,move1)
move1Works = self.searchIsLadderCaptured(loc,True);
self.undo(record)
workingMoves = []
if move0Works:
workingMoves.append(move0)
if move1Works:
workingMoves.append(move1)
return workingMoves
def searchIsLadderCaptured(self,loc,defenderFirst):
if not self.is_on_board(loc):
return False
if self.board[loc] != Board.BLACK and self.board[loc] != Board.WHITE:
return False
if self.group_liberty_count[self.group_head[loc]] > 2 or (defenderFirst and self.group_liberty_count[self.group_head[loc]] > 1):
return False
#Make it so that pla is always the defender
pla = self.board[loc]
opp = Board.get_opp(pla)
arrSize = self.size * self.size * 2 #A bit bigger due to paranoia about recaptures making the sequence longer.
#Stack for the search. These are lists of possible moves to search at each level of the stack
moveLists = [[] for i in range(arrSize)]
moveListCur = [0 for i in range(arrSize)] #Current move list idx searched, equal to -1 if list has not been generated.
records = [None for i in range(arrSize)] #Records so that we can undo moves as we search back up.
stackIdx = 0
moveLists[0] = []
moveListCur[0] = -1
returnValue = False
returnedFromDeeper = False
#Clear the ko loc for the defender at the root node - assume all kos work for the defender
saved_simple_ko_point = self.simple_ko_point
if defenderFirst:
self.simple_ko_point = None
# debug = True
# if debug:
# print("SEARCHING " + str(self.loc_x(loc)) + " " + str(self.loc_y(loc)))
while True:
# if debug:
# print(str(stackIdx) + " " + str(moveListCur[stackIdx]) + "/" + str(len(moveLists[stackIdx])) + " " + str(returnValue) + " " + str(returnedFromDeeper))
#Returned from the root - so that's the answer
if stackIdx <= -1:
assert(stackIdx == -1)
self.simple_ko_point = saved_simple_ko_point
return returnValue
isDefender = (defenderFirst and (stackIdx % 2) == 0) or (not defenderFirst and (stackIdx % 2) == 1)
#We just entered this level?
if moveListCur[stackIdx] == -1:
libs = self.group_liberty_count[self.group_head[loc]]
#Base cases.
#If we are the attacker and the group has only 1 liberty, we already win.
if not isDefender and libs <= 1:
returnValue = True
returnedFromDeeper = True
stackIdx -= 1
continue
#If we are the attacker and the group has 3 liberties, we already lose.
if not isDefender and libs >= 3:
returnValue = False
returnedFromDeeper = True
stackIdx -= 1
continue
#If we are the defender and the group has 2 liberties, we already win.
if isDefender and libs >= 2:
returnValue = False
returnedFromDeeper = True
stackIdx -= 1
continue
#If we are the defender and the attacker left a simple ko point, assume we already win
#because we don't want to say yes on ladders that depend on kos
#This should also hopefully prevent any possible infinite loops - I don't know of any infinite loop
#that would come up in a continuous atari sequence that doesn't ever leave a simple ko point.
if isDefender and self.simple_ko_point is not None:
returnValue = False
returnedFromDeeper = True
stackIdx -= 1
continue
#Otherwise we need to keep searching.
#Generate the move list. Attacker and defender generate moves on the group's liberties, but only the defender
#generates moves on surrounding capturable opposing groups.
if isDefender:
moveLists[stackIdx] = []
self.findLibertyGainingCaptures(loc,moveLists[stackIdx])
self.findLiberties(loc,moveLists[stackIdx])
else:
moveLists[stackIdx] = []
self.findLiberties(loc,moveLists[stackIdx])
assert(len(moveLists[stackIdx]) == 2)
#Early quitouts if the liberties are not adjacent
#(so that filling one doesn't fill an immediate liberty of the other)
move0 = moveLists[stackIdx][0]
move1 = moveLists[stackIdx][1]
libs0 = self.countImmediateLiberties(move0)
libs1 = self.countImmediateLiberties(move1)
#If we are the attacker and we're in a double-ko death situation, then assume we win.
#Both defender liberties must be ko mouths, connecting either ko mouth must not increase the defender's
#liberties, and none of the attacker's surrounding stones can currently be in atari.
#This is not complete - there are situations where the defender's connections increase liberties, or where
#the attacker has stones in atari, but where the defender is still in inescapable atari even if they have
#a large finite number of ko threats. But it's better than nothing.
if libs0 == 0 and libs1 == 0 and self.wouldBeKoCapture(move0,opp) and self.wouldBeKoCapture(move1,opp) :
if self.get_liberties_after_play(pla,move0,3) <= 2 and self.get_liberties_after_play(pla,move1,3) <= 2:
if self.hasLibertyGainingCaptures(loc):
returnValue = True
returnedFromDeeper = True
stackIdx -= 1
continue
if not self.is_adjacent(move0,move1):
#We lose automatically if both escapes get the defender too many libs
if libs0 >= 3 and libs1 >= 3:
returnValue = False
returnedFromDeeper = True
stackIdx -= 1
continue
#Move 1 is not possible, so shrink the list
elif libs0 >= 3:
moveLists[stackIdx] = [move0]
#Move 0 is not possible, so shrink the list
elif libs1 >= 3:
moveLists[stackIdx] = [move1]
#Order the two moves based on a simple heuristic - for each neighboring group with any liberties
#count that the opponent could connect to, count liberties - 1.5.
if len(moveLists[stackIdx]) > 1:
libs0 += self.countHeuristicConnectionLiberties(move0,pla)
libs1 += self.countHeuristicConnectionLiberties(move1,pla)
if libs1 > libs0:
moveLists[stackIdx][0] = move1
moveLists[stackIdx][1] = move0
#And indicate to begin search on the first move generated.
moveListCur[stackIdx] = 0
#Else, we returned from a deeper level (or the same level, via illegal move)
else:
assert(moveListCur[stackIdx] >= 0)
assert(moveListCur[stackIdx] < len(moveLists[stackIdx]))
#If we returned from deeper we need to undo the move we made
if returnedFromDeeper:
self.undo(records[stackIdx])
#Defender has a move that is not ladder captured?
if isDefender and not returnValue: