-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
executable file
·520 lines (434 loc) · 18.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#!/usr/bin/python3
import sys
import os
import argparse
import traceback
import random
import math
import time
import logging
import h5py
import contextlib
import json
import tensorflow as tf
import numpy as np
import data
from board import Board
from model import Model, Target_vars, Metrics
#Command and args-------------------------------------------------------------------
description = """
Train neural net on Go positions from an h5 file of preprocessed training positions.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-traindir', help='Dir to write to for recording training results', required=True)
parser.add_argument('-gamesh5', help='H5 file of preprocessed game data', required=True)
parser.add_argument('-verbose', help='verbose', required=False, action='store_true')
parser.add_argument('-restart-file', help='restart training from file', required=False)
parser.add_argument('-restart-epoch', help='restart training epoch', required=False)
parser.add_argument('-restart-time', help='restart training time', required=False)
parser.add_argument('-fast-factor', help='divide training batches per epoch by this factor', required=False)
parser.add_argument('-validation-prop', help='only use this proportion of validation set', required=False)
parser.add_argument('-use-ranks', help='train model with player rank as an input', required=False, action='store_true')
parser.add_argument('-include-value', help='add value head to model', required=False, action='store_true')
parser.add_argument('-predict-pass', help='train model with predicting pass as an output', required=False, action='store_true')
args = vars(parser.parse_args())
traindir = args["traindir"]
gamesh5 = args["gamesh5"]
verbose = args["verbose"]
include_value = args["include_value"]
use_ranks = args["use_ranks"]
predict_pass = args["predict_pass"]
restart_file = None
start_epoch = 0
start_elapsed = 0
fast_factor = 1
validation_prop = 1.0
logfilemode = "w"
if "restart_file" in args and args["restart_file"] is not None:
restart_file = args["restart_file"]
start_epoch = int(args["restart_epoch"])
start_elapsed = float(args["restart_time"])
logfilemode = "a"
if "fast_factor" in args and args["fast_factor"] is not None:
fast_factor = int(args["fast_factor"])
if "validation_prop" in args and args["validation_prop"] is not None:
validation_prop = float(args["validation_prop"])
if not os.path.exists(traindir):
os.makedirs(traindir)
bareformatter = logging.Formatter("%(message)s")
trainlogger = logging.getLogger("trainlogger")
trainlogger.setLevel(logging.INFO)
fh = logging.FileHandler(traindir+"/train.log", mode=logfilemode)
fh.setFormatter(bareformatter)
trainlogger.addHandler(fh)
detaillogger = logging.getLogger("detaillogger")
detaillogger.setLevel(logging.INFO)
fh = logging.FileHandler(traindir+"/detail.log", mode=logfilemode)
fh.setFormatter(bareformatter)
detaillogger.addHandler(fh)
np.set_printoptions(linewidth=150)
def trainlog(s):
print(s,flush=True)
trainlogger.info(s)
detaillogger.info(s)
def detaillog(s):
detaillogger.info(s)
# Model ----------------------------------------------------------------
print("Building model", flush=True)
model_config = {}
model_config["use_ranks"] = use_ranks
model_config["include_policy"] = True
model_config["include_value"] = include_value
model_config["predict_pass"] = predict_pass
model = Model(model_config)
target_vars = Target_vars(model,for_optimization=True,require_last_move=False)
#Training operation
per_sample_learning_rate = tf.placeholder(tf.float32)
lr_adjusted_variables = model.lr_adjusted_variables
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) #collect batch norm update operations
with tf.control_dependencies(update_ops):
optimizer = tf.train.MomentumOptimizer(per_sample_learning_rate, momentum=0.9, use_nesterov=True)
gradients = optimizer.compute_gradients(target_vars.opt_loss)
adjusted_gradients = []
for (grad,x) in gradients:
adjusted_grad = grad
if x.name in lr_adjusted_variables and grad is not None:
adj_factor = lr_adjusted_variables[x.name]
adjusted_grad = grad * adj_factor
trainlog("Adjusting gradient for " + x.name + " by " + str(adj_factor))
adjusted_gradients.append((adjusted_grad,x))
train_step = optimizer.apply_gradients(adjusted_gradients)
metrics = Metrics(model,target_vars,include_debug_stats=True)
def reduce_norm(x, axis=None, keepdims=False):
return tf.sqrt(tf.reduce_mean(tf.square(x), axis=axis, keepdims=keepdims))
relative_update_by_var = dict([
(v.name,per_sample_learning_rate * reduce_norm(grad) / (1e-10 + reduce_norm(v))) for (grad,v) in adjusted_gradients if grad is not None
])
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
trainlog("Model variable %s, %d parameters" % (variable.name,variable_parameters))
trainlog("Built model, %d total parameters" % total_parameters)
for update_op in tf.get_collection(tf.GraphKeys.UPDATE_OPS):
trainlog("Additional update op on train step: %s" % update_op.name)
# Open H5 file---------------------------------------------------------
print("Opening H5 file: " + gamesh5)
h5_propfaid = h5py.h5p.create(h5py.h5p.FILE_ACCESS)
h5_settings = list(h5_propfaid.get_cache())
assert(h5_settings[2] == 1048576) #Default h5 cache size is 1 MB
h5_settings[2] *= 128 #Make it 128 MB
print("Adjusting H5 cache settings to: " + str(h5_settings))
h5_propfaid.set_cache(*h5_settings)
h5fid = h5py.h5f.open(str.encode(str(gamesh5)), fapl=h5_propfaid)
h5file = h5py.File(h5fid)
h5train = h5file["train"]
h5val = h5file["val"]
h5_chunk_size = h5train.chunks[0]
num_h5_train_rows = h5train.shape[0]
num_h5_val_rows = h5val.shape[0]
# Learning rate -------------------------------------------------------
class LR:
def __init__(
self,
knots,
epoch_chunk_size,
):
self.knots = knots
self.chunk = 0
self.epoch_chunk_size = epoch_chunk_size
def lr(self):
i = 0
while True:
if i == len(self.knots) - 2:
break
(x,y) = self.knots[i+1]
if self.chunk <= x:
break
i += 1
if i >= len(self.knots) - 1:
(x,y) = self.knots[i]
return y
(x0,y0) = self.knots[i]
(x1,y1) = self.knots[i+1]
ly0 = math.log(y0)
ly1 = math.log(y1)
return math.exp(ly0 + (self.chunk - x0) / (x1-x0) * (ly1-ly0))
def report_epoch_done(self,epoch):
self.chunk = (epoch // self.epoch_chunk_size) * float(self.epoch_chunk_size) / fast_factor
# TRAINING PARAMETERS ------------------------------------------------------------
print("Training", flush=True)
num_epochs = 10000
num_samples_per_epoch = 1000000//fast_factor
batch_size = 200
num_batches_per_epoch = num_samples_per_epoch//batch_size
assert(h5_chunk_size % batch_size == 0)
assert(num_samples_per_epoch % batch_size == 0)
lr = LR(
knots = [
#Piecewise linear
#(epoch, learning rate)
(0, 0.0002500),
(10, 0.0001100),
(16, 0.0000750),
(34, 0.0000340),
(60, 0.0000160),
(100, 0.0000072),
(135, 0.0000042),
(180, 0.0000028),
(240, 0.0000018),
(340, 0.0000011),
(440, 0.0000007),
],
epoch_chunk_size = 2,
)
#L2 regularization coefficient
l2_coeff_value = 0.00003
# Training ------------------------------------------------------------
saver = tf.train.Saver(
max_to_keep = 10000,
save_relative_paths = True,
)
#Some tensorflow options
tfconfig = tf.ConfigProto(log_device_placement=False)
#tfconfig.gpu_options.allow_growth = True
#tfconfig.gpu_options.per_process_gpu_memory_fraction = 0.4
with tf.Session(config=tfconfig) as session:
if restart_file is not None:
saver.restore(session, restart_file)
else:
session.run(tf.global_variables_initializer())
sys.stdout.flush()
sys.stderr.flush()
trainlog("Began session")
trainlog("Training on " + str(num_h5_train_rows) + " rows, validating on " + str(int(num_h5_val_rows * validation_prop)) + "/" + str(num_h5_val_rows) + " rows")
trainlog("Epoch size = " + str(num_samples_per_epoch))
trainlog("h5_chunk_size = " + str(h5_chunk_size))
trainlog("Batch size = " + str(batch_size))
trainlog("L2 coeff value = " + str(l2_coeff_value))
trainlog("use_ranks = " + str(use_ranks))
trainlog("predict_pass = " + str(predict_pass))
sys.stdout.flush()
sys.stderr.flush()
input_start = 0
input_len = model.input_shape[0] * model.input_shape[1]
policy_target_start = input_start + input_len
policy_target_len = model.policy_target_shape[0]
value_target_start = policy_target_start + policy_target_len
value_target_len = 1
target_weights_start = value_target_start + value_target_len
target_weights_len = 1
rank_start = target_weights_start + target_weights_len
rank_len = model.rank_shape[0]
side_start = rank_start + rank_len
side_len = 1
turn_number_start = side_start + side_len
turn_number_len = 2
recent_captures_start = turn_number_start + turn_number_len
recent_captures_len = model.max_board_size * model.max_board_size
next_moves_start = recent_captures_start + recent_captures_len
next_moves_len = 12
sgf_hash_start = next_moves_start + next_moves_len
sgf_hash_len = 8
include_history_start = sgf_hash_start + sgf_hash_len
include_history_len = 5
total_row_len = include_history_start + include_history_len
def run(fetches, rows, training, symmetries, pslr=0.0):
assert(len(model.input_shape) == 2)
assert(len(model.policy_target_shape) == 1)
assert(len(model.value_target_shape) == 0)
assert(len(model.target_weights_shape) == 0)
assert(len(model.rank_shape) == 1)
if not isinstance(rows, np.ndarray):
rows = np.array(rows)
assert(rows.shape[1] == total_row_len)
row_inputs = rows[:,0:input_len].reshape([-1] + model.input_shape)
row_policy_targets = rows[:,policy_target_start:policy_target_start+policy_target_len]
row_value_target = rows[:,value_target_start]
row_target_weights = rows[:,target_weights_start]
if use_ranks:
row_ranks = rows[:,rank_start:rank_start+rank_len]
row_include_history = rows[:,include_history_start:include_history_start+include_history_len]
if use_ranks:
return session.run(fetches, feed_dict={
model.inputs: row_inputs,
target_vars.policy_targets: row_policy_targets,
target_vars.value_target: row_value_target,
target_vars.target_weights_from_data: row_target_weights,
model.ranks: row_ranks,
model.symmetries: symmetries,
model.include_history: row_include_history,
per_sample_learning_rate: pslr,
target_vars.l2_reg_coeff: l2_coeff_value,
model.is_training: training
})
else:
return session.run(fetches, feed_dict={
model.inputs: row_inputs,
target_vars.policy_targets: row_policy_targets,
target_vars.value_target: row_value_target,
target_vars.target_weights_from_data: row_target_weights,
model.symmetries: symmetries,
model.include_history: row_include_history,
per_sample_learning_rate: pslr,
target_vars.l2_reg_coeff: l2_coeff_value,
model.is_training: training
})
def np_array_str(arr,precision):
return np.array_str(arr, precision=precision, suppress_small = True, max_line_width = 200)
def merge_dicts(dicts,merge_list):
keys = dicts[0].keys()
return dict((key,merge_list([d[key] for d in dicts])) for key in keys)
def run_validation_in_batches(fetches):
#Run validation accuracy in batches to avoid out of memory error from processing one supergiant batch
validation_batch_size = 256
num_validation_batches = int(num_h5_val_rows * validation_prop + validation_batch_size-1)//validation_batch_size
results = []
for i in range(num_validation_batches):
rows = h5val[i*validation_batch_size : min((i+1)*validation_batch_size, num_h5_val_rows)]
result = run(fetches, rows, symmetries=[False,False,False], training=False)
results.append(result)
return results
tmetrics = {
"acc1": metrics.accuracy1,
"acc4": metrics.accuracy4,
"ploss": target_vars.policy_loss,
"vloss": target_vars.value_loss,
"rloss": target_vars.reg_loss,
"wsum": target_vars.weight_sum,
}
vmetrics = {
"acc1": metrics.accuracy1,
"acc4": metrics.accuracy4,
"ploss": target_vars.policy_loss,
"vloss": target_vars.value_loss,
"wsum": target_vars.weight_sum,
}
def train_stats_str(tmetrics_evaled):
return "tacc1 %5.2f%% tacc4 %5.2f%% tploss %f tvloss %f trloss %f" % (
tmetrics_evaled["acc1"] * 100 / tmetrics_evaled["wsum"],
tmetrics_evaled["acc4"] * 100 / tmetrics_evaled["wsum"],
tmetrics_evaled["ploss"] / tmetrics_evaled["wsum"],
tmetrics_evaled["vloss"] / tmetrics_evaled["wsum"],
tmetrics_evaled["rloss"] / tmetrics_evaled["wsum"],
)
def validation_stats_str(vmetrics_evaled):
return "vacc1 %5.2f%% vacc4 %5.2f%% vploss %f vvloss %f" % (
vmetrics_evaled["acc1"] * 100 / vmetrics_evaled["wsum"],
vmetrics_evaled["acc4"] * 100 / vmetrics_evaled["wsum"],
vmetrics_evaled["ploss"] / vmetrics_evaled["wsum"],
vmetrics_evaled["vloss"] / vmetrics_evaled["wsum"],
)
def time_str(elapsed):
return "time %.3f" % elapsed
def log_detail_stats(relupdates):
results = run_validation_in_batches([metrics.activated_prop_by_layer, metrics.mean_output_by_layer, metrics.stdev_output_by_layer])
[apbls,mobls,sobls] = list(map(list, zip(*results)))
apbl = merge_dicts(apbls, (lambda x: np.mean(x,axis=0)))
mobl = merge_dicts(mobls, (lambda x: np.mean(x,axis=0)))
sobl = merge_dicts(sobls, (lambda x: np.sqrt(np.mean(np.square(x),axis=0))))
for key in apbl:
detaillog("%s: activated_prop %s" % (key, np_array_str(apbl[key], precision=3)))
detaillog("%s: mean_output %s" % (key, np_array_str(mobl[key], precision=4)))
detaillog("%s: stdev_output %s" % (key, np_array_str(sobl[key], precision=4)))
(mw,nw) = session.run([metrics.mean_weights_by_var, metrics.norm_weights_by_var])
for key in mw:
detaillog("%s: mean weight %f" % (key, mw[key]))
for key in nw:
detaillog("%s: norm weight %f" % (key, nw[key]))
if relupdates is not None:
for key in relupdates:
detaillog("%s: relative update %f" % (key,relupdates[key]))
def make_batch_generator():
while(True):
chunk_perm = np.random.permutation(num_h5_train_rows // h5_chunk_size)
batch_perm = np.random.permutation(h5_chunk_size // batch_size)
for chunk_perm_idx in range(len(chunk_perm)):
chunk_start = chunk_perm[chunk_perm_idx] * h5_chunk_size
chunk_end = chunk_start + h5_chunk_size
chunk = np.array(h5train[chunk_start:chunk_end])
for batch_perm_idx in range(len(batch_perm)):
batch_start = batch_perm[batch_perm_idx] * batch_size
batch_end = batch_start + batch_size
yield chunk[batch_start:batch_end]
np.random.shuffle(batch_perm)
batch_generator = make_batch_generator()
def run_batches(num_batches):
tmetrics_results = []
relupdates = dict([(key,0.0) for key in relative_update_by_var])
for i in range(num_batches):
rows = next(batch_generator)
# input_len = model.input_shape[0] * model.input_shape[1]
# target_len = model.target_shape[0]
# row_inputs = rows[:,0:input_len].reshape([-1] + model.input_shape)
# row_targets = rows[:,input_len:input_len+target_len]
# row_target_weights = rows[:,input_len+target_len]
# for j in range(len(row_inputs)):
# print("BOARD")
# print((row_inputs[i,:,0] + row_inputs[i,:,1] + row_inputs[i,:,2]*2).reshape([19,19]))
# print("MYLIB")
# print((row_inputs[i,:,3] + row_inputs[i,:,4]*2 + row_inputs[i,:,5]*3).reshape([19,19]))
# print("OPPLIB")
# print((row_inputs[i,:,6] + row_inputs[i,:,7]*2 + row_inputs[i,:,8]*3).reshape([19,19]))
# print("LAST")
# print((row_inputs[i,:,9] + row_inputs[i,:,10]*2 + row_inputs[i,:,11]*3).reshape([19,19]))
# print("KO")
# print((row_inputs[i,:,12]).reshape([19,19]))
# print("TARGET")
# print(row_targets[i].reshape([19,19]))
# print("WEIGHT")
# print(row_target_weights[i])
# assert(False)
(tmetrics_result, brelupdates, _) = run(
fetches=[tmetrics, relative_update_by_var, train_step],
rows=rows,
training=True,
symmetries=[np.random.random() < 0.5, np.random.random() < 0.5, np.random.random() < 0.5],
pslr=lr.lr()
)
tmetrics_results.append(tmetrics_result)
for key in brelupdates:
relupdates[key] += brelupdates[key]
if i % (max(1,num_batches // 30)) == 0:
print(".", end='', flush=True)
tmetrics_evaled = merge_dicts(tmetrics_results,np.sum)
for key in relupdates:
relupdates[key] = relupdates[key] / num_batches
return (tmetrics_evaled,relupdates)
vmetrics_evaled = merge_dicts(run_validation_in_batches(vmetrics), np.sum)
vstr = validation_stats_str(vmetrics_evaled)
trainlog("Initial: %s" % (vstr))
log_detail_stats(relupdates=None)
start_time = time.perf_counter()
if start_epoch > 0:
lr.report_epoch_done(start_epoch-1)
for e in range(num_epochs):
epoch = start_epoch + e
print("Epoch %d" % (epoch), end='', flush=True)
(tmetrics_evaled,relupdates) = run_batches(num_batches_per_epoch)
vmetrics_evaled = merge_dicts(run_validation_in_batches(vmetrics), np.sum)
lr.report_epoch_done(epoch)
print("")
elapsed = time.perf_counter() - start_time + start_elapsed
tstr = train_stats_str(tmetrics_evaled)
vstr = validation_stats_str(vmetrics_evaled)
timestr = time_str(elapsed)
trainlogger.info("Epoch %d--------------------------------------------------" % (epoch))
detaillogger.info("Epoch %d--------------------------------------------------" % (epoch))
trainlog("%s %s lr %f %s" % (tstr,vstr,lr.lr(),timestr))
log_detail_stats(relupdates)
#Save model every 4 epochs
if epoch % 4 == 0 or epoch == num_epochs-1:
savepath = traindir + "/model" + str(epoch)
with open(savepath + ".config.json","w") as f:
json.dump(model_config,f)
saver.save(session, savepath)
vmetrics_evaled = merge_dicts(run_validation_in_batches(vmetrics), np.sum)
vstr = validation_stats_str(vmetrics_evaled)
trainlog("Final: %s" % (vstr))
# Finish
h5file.close()
h5fid.close()