forked from CausalInference/GFORMULA-SAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample2.sas
480 lines (352 loc) · 11 KB
/
example2.sas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
options linesize=88 pagesize=54;
options nonotes;
%include "gformula3.sas";
%macro create_sample(event = dia) ;
%let condition = ;
%if %upcase(&event) = DIA %then %let condition = dia or censlost or dead ;
%else %if %upcase(&event) = CONT_E %then %let condition = censlost ;
%else %if %upcase(&event) = BIN_E %then %let condition = dead or censlost ;
**SAMPLE Data;
data sample(drop = i j ahbp1-ahbp12 abmi1-abmi12 /* hbp_b bmi_b */);
call streaminit(5027);
do i=1 to 1000;
baseage = int( 35 + 25*rand('uniform'));
array ahbp(12);
array abmi(12);
do j=1 to 12;
ahbp(j) = (0.4>rand('uniform'));
if j > 1 & ahbp(j-1) = 1 then ahbp(j) = 1 ;
abmi(j) = round((25+5*(rand('normal'))),0.001);
end;
do j=3 to 12 until ( &condition ) ;
id=i;
time=j-3;
hbp = ahbp(j);
hbp_l1 = ahbp(j-1);
hbp_l2 = ahbp(j-2);
hbp_b = ahbp(3);
bmi = abmi(j);
bmi_l1 = abmi(j-1);
bmi_l2 = abmi(j-2);
bmi_b = abmi(3);
dia = ( (j/500) >rand('uniform'));
if time < 9 then censlost = (0.05>rand('uniform'));
else censlost = 0 ;
%if %upcase(&event) = DIA or %upcase(&event) = BIN_E %then dead = (0.05>rand('uniform'));;
if time = 9 then dead = . ;
if time = 9 then cont_e = round((bmi+5*(rand('normal'))),0.01) ;
else bmi_e = . ;
if time = 9 then bin_e = rand('bernoulli',0.6);
else bin_e = . ;
output;
end;
end;
run;
data sample ;
set sample ;
%if %upcase(&event)=DIA %then %do;
if censlost = 1 then do ;
dead = . ;
end;
if censlost = 1 or dead = 1 then do ;
dia = . ;
end;
%end;
%if %upcase(&event) = CONT_E %then %do;
if time < 9 then cont_e = . ;
if censlost = 1 then do ;
cont_e = . ;
end;
%end;
%if %upcase(&event)=BIN_E %then %do;
if censlost = 1 then do ;
dead = . ;
end ;
if time < 9 then bin_e = . ;
if censlost = 1 or dead = 1 then do ;
bin_e = . ;
end;
%end;
run;
proc means data=sample;
title 'Means of SAMPLE data';
run;
%mend ;
**INTERV Calls;
%let interv1 =
intno = 1,
intlabel = 'BMI Less Than 25 and No HBP',
nintvar = 2,
intvar1 = bmi,
inttype1 = 2,
intmax1 = 25,
inttimes1 = 0 1 2 3 4 5 6 7 8 9 ,
intvar2 = hbp,
inttype2 = 1,
intvalue2 = 0,
inttimes2 = 0 1 2 3 4 5 6 7 8 9;
%let interv2 =
intno = 2,
intlabel = '50% Chance of 10% BMI Reduction on HBP Dx',
intcond = (hbp = 1 and hbp_l1 = 0 ),
nintvar = 1,
intvar1 = bmi,
inttype1 = 3,
intchg1 = -0.1,
inttimes1 = 0 1 2 3 4 5 6 7 8 9,
intpr1 = 0.5;
**GFORMULA Call;
title 'GFORMULA SAMPLE';
options mprint notes mprintnest center ;
options nomprint nonotes ;
options nomlogic nosymbolgen ;
%create_sample(event = dia) ;
proc datasets library = work nolist ;
save sample ;
run;
quit;
ods graphics off ;
%gformula(
data= sample,
id=id,
time=time,
timepoints = 10,
outc=dia ,
outctype= binsurv ,
outcinteract = 0*1 ,
comprisk = dead ,
fixedcov = hbp bmi baseage ,
ncov=2,
timeptype=concat, timeknots= 1 2 3 4 5 6 7 8 9,
cov1 = hbp, cov1otype = 2, cov1ptype = lag1bin ,
cov2 = bmi, cov2otype = 3, cov2ptype = lag2cub ,
seed= 9458,
check_cov_models = 1 ,
print_cov_means = 0,
save_raw_covmean = 0,
/* datasets */
survdata = work.mysurv,
covmeandata = work.mycovmean ,
intervname = ,
observed_surv= work.myobssurv,
betadata = betadata0 ,
nsimul= 1000 ,
nsamples = 20,
sample_start = 0 ,
sample_end = -1 ,
resultsdata = myresults0,
numint=2 ,
rungraphs = 1,
graphfile=dia.pdf
);
* example run with continuous outcome measured only at end of follow-up using a truncated normal model. Variable of interest
is the difference of bmi between end and start of follow-up. Here there is no competing risk, only censoring due to lost of follow-up. ;
%create_sample(event = cont_e) ;
proc datasets library = work nolist ;
save sample betadata0 myresults0 ;
run;
quit;
%gformula(
data= sample,
id=id,
time=time,
timepoints = 10,
timeptype=concat,
timeknots= 1 2 3 4 5 6 7 8 9,
outc= cont_e ,
outctype= conteofu ,
outcinteract = ,
comprisk = ,
fixedcov = hbp bmi baseage,
ncov = 2 ,
cov1 = hbp, cov1otype = 2, cov1ptype = lag1bin ,
cov2 = bmi, cov2otype = 3, cov2ptype = lag2cub ,
seed= 9458,
check_cov_models = 1 , /* need to set to be 1 to save cov mean data for graphs */
print_cov_means = 0,
save_raw_covmean = 0,
/* datasets */
survdata = work.mysurv, /* for graphs */
covmeandata = work.mycovmean , /* for graphs */
intervname = ,
observed_surv= work.myobssurv ,/* for graphs */
nsimul= 1000 ,
nsamples = 20,
sample_start = 0 ,
sample_end = -1 ,
numint=0 ,
rungraphs = 0 ,
printlogstats = 0
);
* example call for construncting graphs external to gformula macro call based on three data sets set in the gformula call ;
proc datasets library = work nolist ;
save mycovmean mysurv myobssurv betadata0 myresults0 ;
run;
quit;
data titles;
age='Mean age ';
hbp='Mean high blood pressure indicator';
bmi='Mean body mass indicator' ;
run;
* clean the graph library ;
*proc greplay igout = GSEG nofs ;
* delete _all_ ;
* run;
* quit;
%construct_graphs(
time=time ,
outcome=cont_e ,
comprisk = ,
outctype = conteofu,
covmean= mycovmean ,
obssurv = myobssurv ,
simsurv = mysurv ,
sixgraphs = 0 ,
gfilename= graphexample.pdf ,
title1= "the first row of title" ,
title2= "the second row" ,
title3= "the third row" ,
titledata= titles ,
tsize=1 ,
frombootstrap = 1 ) ;
/* run example 1 for comparing results from two ways of running same analysis */
* example calls for splitting the bootstraps into two part and combining to obtain the final results ;
* we will run a total of 50 samples into tow parts of 0-25 and 26-50. ;
%create_sample(event = dia) ;
proc datasets library = work nolist ;
save sample betadata0 myresults0 ;
run;
quit;
%gformula(
data= sample,
id=id,
time=time,
timepoints = 10,
timeptype=concat,
timeknots= 1 2 3 4 5 6 7 8 9,
outc=dia ,
outctype= binsurv ,
outcinteract = 0*1 ,
comprisk = dead ,
fixedcov = hbp bmi baseage,
ncov=2,
cov1 = hbp, cov1otype = 2, cov1ptype = lag1bin,
cov2 = bmi, cov2otype = 3, cov2ptype = lag2cub ,
seed= 9458,
check_cov_models = 1 ,
print_cov_means = 0,
save_raw_covmean = 0,
/* datasets */
savelib = work ,
survdata = mysurv,
covmeandata = mycovmean ,
intervname = myinterv ,
observed_surv= myobssurv,
betadata = betadata0a ,
nsimul= 1000 ,
nsamples = 20,
sample_start = 0 ,
sample_end = 10 ,
numint=2 ,
rungraphs = 0 ,
printlogstats = 0
);
proc datasets library = work nolist ;
save sample myresults0 betadata0 betadata0a mysurv_0_10 mycovmean_0_10 myinterv_0_10 ;
run;
quit ;
%gformula(
data= sample,
id=id,
time=time,
timepoints = 10,
timeptype=concat,
timeknots= 1 2 3 4 5 6 7 8 9,
outc=dia ,
outctype= binsurv ,
outcinteract = 0*1 ,
comprisk = dead ,
fixedcov = hbp bmi baseage,
ncov=2,
cov1 = hbp, cov1otype = 2, cov1ptype = lag1bin ,
cov2 = bmi, cov2otype = 3, cov2ptype = lag2cub ,
seed= 9458,
check_cov_models = 1 ,
print_cov_means = 0,
save_raw_covmean = 0,
/* datasets */
savelib = work ,
survdata = mysurv,
covmeandata = mycovmean ,
intervname = myinterv ,
observed_surv= myobssurv,
betadata = betadata0b ,
nsimul= 1000 ,
nsamples = 20,
sample_start = 11 ,
sample_end = 20 ,
numint=2 ,
rungraphs = 0 ,
printlogstats = 0
);
proc datasets library = work nolist ;
save myresults0 betadata0 betadata0a betadata0b mysurv_0_10 mycovmean_0_10 myinterv_0_10
mysurv_11_20 mycovmean_11_20 myinterv_11_20 ;
run;
quit ;
%bootstrap_results(
bootlib = work ,
outc = dia,
comprisk = dead ,
outctype = binsurv ,
bootname = myinterv ,
check_cov_models = 1,
covmeandata = mycovmean , /* needed for graphs */
observed_surv = myobssurv , /* needed for graphs */
combine_survdata = 1 , /* for call to construct graphs */
survdata=mysurv , /* needed for graphs */
print_cov_means = 1,
savecovmean = 0,
time = time ,
timepoints = 10,
ncov = 2,
numparts = 2,
samplestart = 0 11 ,
sampleend = 10 20 ,
numboot = 20,
numint = 2 ,
refint = 0 ,
resultsdata = myresults1 ,
rungraphs = 1 ,
graphfile=dia2.pdf
);
data titles;
age='Mean age ';
hbp='Mean high blood pressure indicator';
bmi='Mean body mass indicator' ;
run;
/* For an external call to construct_graphs from a bootstrap run in parts we need
the combined versions of covmean, obssurv, and simsurv. These were constructed internally
in the previous call to bootstrap_results, but can be constucted manually. */
%construct_graphs(
time=time ,
outcome=dia ,
comprisk = dead ,
outctype = binsurv,
covmean= work.mycovmean ,
obssurv = work.myobssurv ,
simsurv = work.mysurv ,
sixgraphs = 0 ,
gfilename= dia3.pdf ,
titledata= titles ,
tsize=1 ,
frombootstrap = 1 ) ;
/**/
data betadata1 ;
set betadata0a betadata0b ;
run;
proc compare base = myresults0 compare = myresults1;
run;
proc compare base = betadata0 compare = betadata1;
run;
/**/