-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtest.py
249 lines (197 loc) · 7.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#coding=utf-8
import copy
import cv2
import time
import math
import glob
import numpy as np
import script
def psnr(im1,im2):
if im1.shape != im2.shape or len(im2.shape)<2:
return 0
di = im2.shape[0] * im2.shape[1]
if len(im2.shape)==3:
di = im2.shape[0] * im2.shape[1] * im2.shape[2]
diff = np.abs(im1 - im2)
rmse = np.sum(diff*diff) /di
print(rmse)
psnr = 20*np.log10(255/rmse)
return psnr
def rotate_about_center(src, angle, scale=1.):
w = src.shape[1]
h = src.shape[0]
rangle = np.deg2rad(angle) # angle in radians
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)
def attack(fname,type):
img = cv2.imread(fname)
if type == "ori":
return img
if type == "blur":
kernel = np.ones((5,5),np.float32)/25
return cv2.filter2D(img,-1,kernel)
if type=="rotate180":
return rotate_about_center(img,180)
if type=="rotate90":
return rotate_about_center(img,90)
if type=="chop10":
w,h = img.shape[:2]
return img[int(w*0.1):,:]
if type=="chop5":
w,h = img.shape[:2]
return img[int(w*0.05):,:]
if type=="chop30":
w,h = img.shape[:2]
return img[int(w*0.3):,:]
if type == "gray":
return cv2.imread(fname,cv2.IMREAD_GRAYSCALE)
if type == "redgray":
return img[:,:,0]
if type == "saltnoise":
for k in range(1000):
i = int(np.random.random() * img.shape[1])
j = int(np.random.random() * img.shape[0])
if img.ndim == 2:
img[j, i] = 255
elif img.ndim == 3:
img[j, i, 0] = 255
img[j, i, 1] = 255
img[j, i, 2] = 255
return img
# if type == "vwm":
# vwm = script.VisWatermark
# mark = cv2.imread('./data/wm.png')
# params = {}
# params['position'] = (30,30)
# img =vwm.watermark_image(img, mark, params)
# return img
if type == "randline":
cv2.rectangle(img,(384,0),(510,128),(0,255,0),3)
cv2.rectangle(img,(0,0),(300,128),(255,0,0),3)
cv2.line(img,(0,0),(511,511),(255,0,0),5)
cv2.line(img,(0,511),(511,0),(255,0,255),5)
return img
if type == "cover":
cv2.circle(img,(256,256), 63, (0,0,255), -1)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'Just DO it ',(10,500), font, 4,(255,255,0),2)
return img
if type == "brighter10":
w,h = img.shape[:2]
for xi in range(0,w):
for xj in range(0,h):
img[xi,xj,0] = int(img[xi,xj,0]*1.1)
img[xi,xj,1] = int(img[xi,xj,1]*1.1)
img[xi,xj,2] = int(img[xi,xj,2]*1.1)
return img
if type == "darker10":
w,h = img.shape[:2]
for xi in range(0,w):
for xj in range(0,h):
img[xi,xj,0] = int(img[xi,xj,0]*0.9)
img[xi,xj,1] = int(img[xi,xj,1]*0.9)
img[xi,xj,2] = int(img[xi,xj,2]*0.9)
return img
if type == "largersize":
w,h=img.shape[:2]
return cv2.resize(img,(int(h*1.5),w))
if type == "smallersize":
w,h=img.shape[:2]
return cv2.resize(img,(int(h*0.5),w))
return img
attack_list ={}
attack_list['ori'] = '原图'
#attack_list['blur'] = '模糊'
attack_list['rotate180'] ='旋转180度'
attack_list['rotate90'] = '旋转90度'
attack_list['chop5'] = '剪切掉5%'
attack_list['chop10'] = '剪切掉10%'
attack_list['chop30'] = '剪切掉30%'
attack_list['saltnoise'] ='椒盐噪声'
attack_list['vwm'] = '增加明水印'
attack_list['randline'] = '随机画线'
attack_list['cover'] = '随机遮挡'
attack_list['brighter10'] = '亮度提高10%'
attack_list['darker10'] = '亮度降低10%'
#attack_list['largersize'] = '图像拉伸'
#attack_list['smallersize'] = '图像缩小'
#attack_list['gray'] ='自然灰度处理'
#attack_list['redgray'] ='红色灰度处理'
def test_blindwm(alg,imgname,wmname,times=1):
handle = script.dctwm
if alg == 'DCT':
handle = script.dctwm
if alg == 'DWT':
handle = script.dwtwm
print('\n##############测试'+alg+'盲提取算法,以及鲁棒性')
btime=time.time()
for i in range(times):
img = cv2.imread('./data/'+imgname)
wm = cv2.imread('./data/'+wmname,cv2.IMREAD_GRAYSCALE)
wmd = handle.embed(img,wm)
outname = './output/'+alg+'_'+imgname
cv2.imwrite(outname,wmd)
print('嵌入完成,文件保存在 :{},平均耗时 :{} 毫秒 ,psnr : {}'.format(outname,int((time.time()-btime)*1000/times),psnr(img,wmd)))
for k,v in attack_list.items():
wmd = attack(outname,k)
cv2.imwrite('./output/attack/'+k+'_'+imgname,wmd)
btime=time.time()
wm = cv2.imread('./data/'+wmname,cv2.IMREAD_GRAYSCALE)
sim = handle.extract(wmd,wm)
print('{:10} : 提取水印 {},提取信息相似度是:{} ,耗时:{} 毫秒.'.format(v,'成功' if sim>0.7 else '失败' ,sim,int((time.time()-btime)*1000)))
def test_report():
#I:使用8张图片生成 8张水印图和 11×8种攻击后的图片
# 包括黑底白字截图,不同大小的白底黑字截图、表格截图、人物照片、其他照片
#攻击类型: 单边剪切 %3,%10,%30,提高亮度,降低亮度,随机画线、随机遮挡、全图增加噪点、旋转90度,旋转180度、
#II:随机下载70张网络图片,包括不同大小的,大部分是文档和桌面截图,少部分是风景
probsum = 0
maxsim= 0
num = 0
for name in glob.glob('./output/test/*'):
wmd =cv2.imread(name)
wm = cv2.imread('./data/wm.png',cv2.IMREAD_GRAYSCALE)
sim = script.dctwm.extract(wmd,wm)
probsum+=sim
maxsim= max(maxsim,sim)
num+=1
print ('{} has wm prob : {}'.format(name,sim))
print('avg prob {},max prob {}'.format(probsum/num,maxsim))
probsum = 0
minsim= 1.0
num = 0
for name in glob.glob('./output/attack/*'):
wmd =cv2.imread(name)
wm = cv2.imread('./data/wm.png',cv2.IMREAD_GRAYSCALE)
sim = script.dctwm.extract(wmd,wm)
probsum+=sim
minsim= min(minsim,sim)
num+=1
print ('{} has wm prob : {}'.format(name,sim))
print('avg prob {} ,min prob {}'.format(probsum/num,minsim))
#1 :召回率
#2 :准确率
#3 :时间性能
# 1024×1023
#200×500
#100×100
#32×32
if __name__ == '__main__':
test_blindwm('DCT','ts.jpg','wm.png')
test_blindwm('DCT','lena.jpg','wm.png')
test_blindwm('DCT','ts.jpg','wm.png')
test_blindwm('DCT','tm.jpg','wm.png')
test_blindwm('DCT','ta.png','wm.png')
test_blindwm('DCT','tb.jpg','wm.png')
test_blindwm('DCT','td.jpg','wm.png')
test_blindwm('DCT','ss.jpg','wm.png')
test_blindwm('DCT','bm.jpg','wm.png')
test_report()
# test_blindwm('DWT','lena.jpg','wm.png')
# test_blindwm('DWT','tm.jpg','wm.png')
# test_blindwm('DWT','ts.jpg','wm.png')
# test_blindwm('DWT','td.jpg','wm.png')