-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtargetvis.py
486 lines (456 loc) · 17.6 KB
/
targetvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""Functions and constants for target visibility calculations"""
from datetime import datetime, timedelta
from astroquery.simbad import Simbad
from astropy.coordinates import SkyCoord
from astropy import units as u
from ephem import Observer, FixedBody, Sun, Moon, Jupiter
import numpy as np
from plotly.graph_objs import Scatter
from plotly.graph_objects import Table
# Define coordinates of calibrators
CALIB_COORDINATES = {
'3C48' :'01h37m41.2994s +33d09m35.134s',
'3C196':'08h13m36.033s +48d13m02.56s',
'3C295':'14h11m20.519s +52d12m09.97s',
'3C147':'05h42m36.1379s +49d51m07.234s'
}
# Define coordinates of A-team sources
ATEAM_COORDINATES = {
'CygA':'19h59m28.3566s +40d44m02.096s',
'CasA':'23h23m24.000s +58d48m54.00s',
'TauA':'05h34m31.94s +22d00m52.2s',
'VirA':'12h30m49.4233s +12d23m28.043s'
}
# FWHM of HBA tile beam in deg
TILE_BEAM_SIZE = 20
# TODO: FWHM of LBA dipole beam in deg
def get_dutch_lofar_object():
"""Return an ephem.Observer() object with details containing the Dutch
Lofar array"""
lofar = Observer()
lofar.lon = '6.869882'
lofar.lat = '52.915129'
lofar.elevation = 15.
return lofar
def get_lv_lofar_object():
"""Return an ephem.Observer() object with details containing the LV station"""
lv = Observer()
lv.lon = '21.854916'
lv.lat = '57.553493'
return lv
def get_ie_lofar_object():
"""Return an ephem.Observer() object with details containing the IE station"""
ie = Observer()
ie.lon = '-7.921790'
ie.lat = '53.094967'
return ie
def get_station_beam_size(n_core, n_remote, n_int, antenna_mode):
"""Return FWHM of station beam for a given antenna list and array mode"""
# FWHM of station beams in deg
corefwhm = {'lba':5.16, 'hba':3.80}
remotefwhm = {'lba':5.16, 'hba':2.85}
intfwhm = {'lba':6.46, 'hba':2.07}
if 'lba' in antenna_mode:
mode = 'lba'
station_beam = corefwhm[mode]
else:
mode = 'hba'
if n_int > 0:
station_beam = intfwhm[mode]
elif n_remote > 0 and 'inner' not in antenna_mode:
# Antenna set is untapered remote station
station_beam = remotefwhm[mode]
else:
# Antenna set is either just the core or core + tapered remote
station_beam = corefwhm[mode]
return station_beam
def get_tile_beam(coord):
"""Returns the midpoint between the different pointings in coord.
If coord has one item, midpoint is the same as that item.
Note that the midpoint on the sky for large angular separation
is ill-defined. In our case, it is almost always within ~7 degrees
and so this should be fine. For more details, see
https://github.com/astropy/astropy/issues/5766"""
temp_ra = 0.
temp_dec = 0.
n_beams = len(coord)
for c in coord:
this_coord = SkyCoord(c)
temp_ra += this_coord.ra.degree
temp_dec += this_coord.dec.degree
t_beam = SkyCoord(temp_ra/n_beams, temp_dec/n_beams, unit=u.deg)
return t_beam
def get_axes_range(layout):
"""For a given layout dict, find the axes limits"""
xmin = 0.
ymin = 0.
xmax = 0.
ymax = 0.
temp_xmin = []
temp_ymin = []
temp_xmax = []
temp_ymax = []
for item in layout['shapes']:
temp_xmin.append(item['x0'])
temp_xmax.append(item['x1'])
temp_ymin.append(item['y0'])
temp_ymax.append(item['y1'])
xmin = int(np.min(temp_xmin))
xmax = int(np.max(temp_xmax))
ymin = int(np.min(temp_ymin))
ymax = int(np.max(temp_ymax))
return xmin, xmax, ymin, ymax
def find_beam_layout(src_name, coord, n_core, n_remote, n_int, antenna_mode):
"""For a given set of source coordinates, station list, and array mode,
generate a plotly Data object for the dipole/tile/station beams"""
src_name_list = src_name.split(',')
coord_list = coord.split(',')
station_beam_size = get_station_beam_size(n_core, n_remote,
n_int, antenna_mode)/2
# Create an initial layout and data object
layout = {'shapes': [],
'xaxis':{'title':'Right Ascension (degree)'},
'yaxis':{'title':'Declination (degree)'},
'title':'Beam layout',
'showlegend': False
}
data = []
label_offset = 0.5
# Iterate over coord and plot the station beam
index = 0
for c in coord_list:
s_beam = SkyCoord(c)
layout['shapes'].append({
'type':'circle',
'xref':'x',
'yref':'y',
'x0': s_beam.ra.deg-station_beam_size,
'x1': s_beam.ra.deg+station_beam_size,
'y0': s_beam.dec.deg-station_beam_size,
'y1': s_beam.dec.deg+station_beam_size,
'line': {'color':'rgba(50, 171, 96, 1)'}
})
data.append(
Scatter(x=[s_beam.ra.deg],
y=[s_beam.dec.deg+station_beam_size+label_offset],
text=[src_name_list[index]],
mode='text')
)
index += 1
# If antenna_mode is hba, plot the tile beam
if 'hba' in antenna_mode:
# Calculate the reference tile beam
t_beam = get_tile_beam(coord_list)
layout['shapes'].append({
'type':'circle',
'xref':'x',
'yref':'y',
'x0': t_beam.ra.deg-TILE_BEAM_SIZE/2,
'x1': t_beam.ra.deg+TILE_BEAM_SIZE/2,
'y0': t_beam.dec.deg-TILE_BEAM_SIZE/2,
'y1': t_beam.dec.deg+TILE_BEAM_SIZE/2,
'line': {'color':'rgba(250, 0, 250, 1)'}
})
data.append(
Scatter(x=[t_beam.ra.deg],
y=[t_beam.dec.deg+TILE_BEAM_SIZE/2 + label_offset],
text=['Tile beam'],
mode='text')
)
# Set the axes range to display
bufsize = 2 # Buffer space in degrees
xmin, xmax, ymin, ymax = get_axes_range(layout)
# Swap xmin and xmax so that declination decreases to the right.
layout['xaxis']['range'] = [xmax+bufsize, xmin-bufsize]
layout['yaxis']['range'] = [ymin-bufsize, ymax+bufsize]
return {'layout': layout, 'data':data}
def resolve_lotss_source(name):
"""Check if a given source name is a LoTSS pointing? If it is, return its
coordinates in (hourangle, deg) units. Else, return None."""
coord = None
with open('lotss_pointings.txt', newline='\n') as f:
text = f.readlines()
for line in text:
if name == line.split()[0]:
coord = {'RA':[line.split()[3]], 'DEC':[line.split()[4]]}
break
return coord
def resolve_source(names):
"""For a given source name, use astroquery to find its coordinates.
The source name can be a single source or a comma separated list."""
return_string = []
try:
for name in names.split(','):
query = Simbad.query_object(name)
if query is None:
# Source is not a valid Simbad object. Is it a LoTSS pointing?
query = resolve_lotss_source(name)
ra = query['RA'][0]
dec = query['DEC'][0]
coord = SkyCoord('{} {}'.format(ra, dec), unit=(u.hourangle, u.deg))
return_string.append(coord.to_string('hmsdms'))
# Convert the list to a comma separated list before returning
return_string = ','.join(return_string)
except:
return_string = None
return return_string
def get_elevation_solar(obs_date, offender):
"""For a given observation date and bright solar system object, return its
elevation over the course of that day.
Input parameters:
* obs_date: Observation date in datetime.datetime format
* offender: Name of the solar system object. Allowed names are
Sun, Moon, and Jupiter.
Returns:
List of elevations in degrees. If offender is invalid, return None.
"""
# Create the telescope object
lofar = get_dutch_lofar_object()
if offender == 'Sun':
obj = Sun()
elif offender == 'Moon':
obj = Moon()
elif offender == 'Jupiter':
obj = Jupiter()
else:
return None
yaxis = []
for time in obs_date:
lofar.date = time
obj.compute(lofar)
elevation = float(obj.alt)*180./np.pi
if elevation < 0:
elevation = np.nan
yaxis.append(elevation)
return yaxis
def get_elevation_target(target, obs_date, n_int):
"""For a given target and list of times, return a list of its elevation.
If n_int is 0, compute elevation with respect to the NL array. If n_int>0,
elevation needs to take into account the entire European array.
Input Parameters:
* target: An ephem.FixedBody() object
* obs_date: List of datetime.datetime objects
* n_int: Number of international stations to use in the observation.
"""
lofar = get_dutch_lofar_object()
yaxis = []
if n_int == 0:
# We are observing with the Dutch array
for time in obs_date:
lofar.date = time
target.compute(lofar)
elevation = float(target.alt)*180./np.pi
if elevation < 0:
elevation = np.nan
yaxis.append(elevation)
else:
# We are observing with the entire ILT array
# In addition to lofar, we also need IE and LV Observer() objects
lv = get_lv_lofar_object()
ie = get_ie_lofar_object()
elevation = [0, 0, 0]
for time in obs_date:
lofar.date = time
lv.date = time
ie.date = time
target.compute(lofar)
elevation[0] = float(target.alt)*180./np.pi
target.compute(lv)
elevation[1] = float(target.alt)*180./np.pi
target.compute(ie)
elevation[2] = float(target.alt)*180./np.pi
if np.min(elevation) < 0:
yaxis.append(np.nan)
else:
yaxis.append(np.min(elevation))
return yaxis
def find_target_elevation(src_name, coord, obs_date, n_int):
"""For a given date and coordinate, find the elevation of the source every
10 mins. Return both the datetime object array and the elevation array"""
# Find the start and the end times
d = obs_date.split('-')
start_time = datetime(int(d[0]), int(d[1]), int(d[2]), 0, 0, 0)
end_time = start_time + timedelta(days=1)
# Get a list of values along the time axis
xaxis = []
temp_time = start_time
while temp_time < end_time:
xaxis.append(temp_time)
temp_time += timedelta(minutes=5)
# Create a target object
return_data = []
src_name_list = src_name.split(',')
for i in range(len(coord)):
target = FixedBody()
target._epoch = '2000'
coord_target = SkyCoord(coord[i])
target._ra = coord_target.ra.radian
target._dec = coord_target.dec.radian
# Iterate over each time interval and estimate the elevation of the target
yaxis = get_elevation_target(target, xaxis, n_int)
# Create a Plotly Scatter object that can be plotted later
return_data.append(Scatter(x=xaxis, y=yaxis, mode='lines',
line={}, name=src_name_list[i]))
# We should also plot Sun, Moon, and Jupiter by default
yaxis = get_elevation_solar(xaxis, 'Sun')
return_data.append(Scatter(x=xaxis, y=yaxis, mode='lines',
line={}, name='Sun'))
yaxis = get_elevation_solar(xaxis, 'Moon')
return_data.append(Scatter(x=xaxis, y=yaxis, mode='lines',
line={}, name='Moon'))
yaxis = get_elevation_solar(xaxis, 'Jupiter')
return_data.append(Scatter(x=xaxis, y=yaxis, mode='lines',
line={}, name='Jupiter'))
return return_data
def add_sun_rise_and_set_times(obs_date, n_int, elevation_fig):
"""
For a given obs_date, find the sun rise and set times. Add these to the supplied
elevation_fig and return the modified elevation_fig.
"""
d = obs_date.split('-')
start_time = datetime(int(d[0]), int(d[1]), int(d[2]), 0, 0, 0)
sun = Sun()
sun._epoch = '2000'
if n_int == 0:
# Only Dutch array is being used. Calculate Sun rise and set times in NL
lofar = get_dutch_lofar_object()
lofar.date = start_time
sun_rise = lofar.next_rising(sun).datetime()
sun_set = lofar.next_setting(sun).datetime()
# Define a 1 hour window around Sun rise and Sun set.
sun_rise_beg = sun_rise - timedelta(minutes=30)
sun_rise_end = sun_rise + timedelta(minutes=30)
sun_set_beg = sun_set - timedelta(minutes=30)
sun_set_end = sun_set + timedelta(minutes=30)
else:
# Calculate sun rise and set times using Latvian and Irish stations
lv = get_lv_lofar_object()
ie = get_ie_lofar_object()
lv.date = start_time
ie.date = start_time
lv_sun_rise = lv.next_rising(sun).datetime()
lv_sun_set = lv.next_setting(sun).datetime()
ie_sun_rise = ie.next_rising(sun).datetime()
ie_sun_set = ie.next_setting(sun).datetime()
# Define a window around sun rise and sun set.
sun_rise_beg = lv_sun_rise - timedelta(minutes=30)
sun_rise_end = ie_sun_rise + timedelta(minutes=30)
sun_set_beg = lv_sun_set - timedelta(minutes=30)
sun_set_end = ie_sun_set + timedelta(minutes=30)
# Add to elevation_fig
elevation_fig['layout']['shapes'].append({
'type': "rect",
'xref': 'x',
'yref': 'y',
'x0' : sun_rise_beg,
'x1' : sun_rise_end,
'y0' : 0,
'y1' : 90,
'fillcolor': 'LightSkyBlue',
'opacity': 0.4,
'line': {'width': 0,}
})
elevation_fig['layout']['shapes'].append({
'type': "rect",
'xref': 'x',
'yref': 'y',
'x0' : sun_set_beg,
'x1' : sun_set_end,
'y0' : 0,
'y1' : 90,
'fillcolor': 'LightSkyBlue',
'opacity': 0.4,
'line': {'width': 0,}
})
return elevation_fig
def get_distance_solar(target, obs_date, offender):
"""Compute the angular distance in degrees between the specified target and
the offending radio source in the solar system on the specified observing
date.
Input parameters:
* target - Coordinate of the target as an Astropy SkyCoord object
* obs_date - Observing date in datetime.datetime format
* offender - Name of the offending bright source. Allowed values are
Sun, Moon, Jupiter.
Returns:
For Moon, the minimum and maximum separation are returned. For others,
distance,None is returned."""
# Get a list of values along the time axis
d = obs_date.split('-')
start_time = datetime(int(d[0]), int(d[1]), int(d[2]), 0, 0, 0)
end_time = start_time + timedelta(hours=24)
taxis = []
temp_time = start_time
while temp_time < end_time:
taxis.append(temp_time)
temp_time += timedelta(hours=1)
angsep = []
if offender == 'Sun':
obj = Sun()
elif offender == 'Moon':
obj = Moon()
elif offender == 'Jupiter':
obj = Jupiter()
else: pass
# Estimate the angular distance over the entire time axis
for time in taxis:
obj.compute(time)
coord = SkyCoord('{} {}'.format(obj.ra, obj.dec), unit=(u.hourangle, u.deg))
angsep.append(coord.separation(target).deg)
# Return appropriate result
if offender == 'Moon':
return np.min(angsep), np.max(angsep)
else:
return np.mean(angsep), None
def make_distance_table(src_name_input, coord_input, obs_date):
"""Generate a plotly Table showing the distances between user-specified
targets and a few offending sources"""
src_name_list = src_name_input.split(',')
coord_list = coord_input.split(',')
col_names = ['Sources']+src_name_list
header = {
'values': col_names,
'font' : {'size':12, 'color':'white'},
'align' : 'left',
'fill_color': 'grey',
'line_color': 'darkslategray'
}
col_values = [['CasA', 'CygA', 'TauA', 'VirA', 'Sun',
'Moon(min,max)', 'Jupiter']]
# Iterate through each source and compute the distances
for idx, target in enumerate(src_name_list):
# Get the coordinate of this target
t_coord = SkyCoord(coord_list[idx])
# CasA
s_coord = SkyCoord(ATEAM_COORDINATES['CasA'])
d_casa = s_coord.separation(t_coord).deg
# CygA
s_coord = SkyCoord(ATEAM_COORDINATES['CygA'])
d_cyga = s_coord.separation(t_coord).deg
# TauA
s_coord = SkyCoord(ATEAM_COORDINATES['TauA'])
d_taua = s_coord.separation(t_coord).deg
# VirA
s_coord = SkyCoord(ATEAM_COORDINATES['VirA'])
d_vira = s_coord.separation(t_coord).deg
# Sun
d_sun, _ = get_distance_solar(t_coord, obs_date, 'Sun')
# Moon
d_moon_min, d_moon_max = get_distance_solar(t_coord, obs_date, 'Moon')
# Jupiter
d_jupiter, _ = get_distance_solar(t_coord, obs_date, 'Jupiter')
# Consolidate all into a list
this_row = ['{:0.2f}'.format(d_casa),
'{:0.2f}'.format(d_cyga),
'{:0.2f}'.format(d_taua),
'{:0.2f}'.format(d_vira),
'{:0.2f}'.format(d_sun),
'{:0.2f},{:0.2f}'.format(d_moon_min, d_moon_max),
'{:0.2f}'.format(d_jupiter)]
# Add this row to the col_values table
col_values.append(this_row)
tab = Table(
header=header,
cells=dict(values=col_values, align='left')
)
return tab