-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathfim.py
83 lines (73 loc) · 2.66 KB
/
fim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import functools
import numpy as np
# this is expensive so we cache it
@functools.lru_cache(maxsize=None)
def get_fim_token_ids(tokenizer):
try:
_, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map[
"additional_special_tokens"
]
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
tokenizer.vocab[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]
)
except KeyError:
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = None, None, None, None
return suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id
## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
sample,
np_rng,
suffix_tok_id,
prefix_tok_id,
middle_tok_id,
pad_tok_id,
fim_rate=0.5,
fim_spm_rate=0.5,
truncate_or_pad=False,
):
"""
Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
PSM and SPM (with a probability of fim_spm_rate).
"""
if np_rng.binomial(1, fim_rate):
boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))
boundaries.sort()
prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
suffix = np.array(sample[boundaries[1] :], dtype=np.int64)
if truncate_or_pad:
new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
diff = new_length - len(sample)
if diff > 0:
if suffix.shape[0] <= diff:
return sample, np_rng
suffix = suffix[: suffix.shape[0] - diff]
elif diff < 0:
suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])
if np_rng.binomial(1, fim_spm_rate):
# SPM (variant 2 from FIM paper)
new_sample = np.concatenate(
[
[prefix_tok_id, suffix_tok_id],
suffix,
[middle_tok_id],
prefix,
middle,
]
)
else:
# PSM
new_sample = np.concatenate(
[
[prefix_tok_id],
prefix,
[suffix_tok_id],
suffix,
[middle_tok_id],
middle,
]
)
else:
# don't do FIM preproc
new_sample = sample
return list(new_sample), np_rng