-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmnist.py
56 lines (43 loc) · 1.49 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Slightly modified version of https://github.com/hsjeong5/MNIST-for-Numpy
"""
import gzip
import os
import pickle
from urllib import request
import numpy as np
filename = [
["training_images", "train-images-idx3-ubyte.gz"],
["test_images", "t10k-images-idx3-ubyte.gz"],
["training_labels", "train-labels-idx1-ubyte.gz"],
["test_labels", "t10k-labels-idx1-ubyte.gz"]
]
def download_mnist():
base_url = "http://yann.lecun.com/exdb/mnist/"
for name in filename:
print("Downloading " + name[1] + "...")
request.urlretrieve(base_url + name[1], name[1])
print("Download complete.")
def save_mnist():
mnist = {}
for name in filename[:2]:
with gzip.open(name[1], 'rb') as f:
mnist[name[0]] = np.frombuffer(f.read(), np.uint8, offset=16).reshape(-1, 28 * 28)
for name in filename[-2:]:
with gzip.open(name[1], 'rb') as f:
mnist[name[0]] = np.frombuffer(f.read(), np.uint8, offset=8)
for _, gz_file in filename:
os.remove(gz_file)
with open("mnist.pkl", 'wb') as f:
pickle.dump(mnist, f)
print("Save complete.")
def init():
if not os.path.isfile("mnist.pkl"):
download_mnist()
save_mnist()
else:
print("Dataset already downloaded, delete mnist.pkl if you want to re-download.")
def load():
with open("mnist.pkl", 'rb') as f:
mnist = pickle.load(f)
return mnist["training_images"], mnist["training_labels"], mnist["test_images"], mnist["test_labels"]