-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcudajit.mli
879 lines (766 loc) · 40.4 KB
/
cudajit.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
(** Bindings to the NVIDIA `cuda` and `nvrtc` libraries. *)
(** NVRTC is a runtime compilation library for CUDA C++. See:
{{:https://docs.nvidia.com/cuda/nvrtc/index.html} The User guide for the NVRTC library}. *)
module Nvrtc : sig
type result [@@deriving sexp]
(** See {{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv411nvrtcResult} enum nvrtcResult}.
*)
exception Nvrtc_error of { status : result; message : string }
(** Error codes returned by CUDA functions are converted to exceptions. The message stores a
snake-case variant of the offending CUDA function name (see {!Nvrtc_ffi.Bindings.Functions}
for the direct funciton bindings). *)
val is_success : result -> bool
type compile_to_ptx_result [@@deriving sexp_of]
(** The values passed from {!compile_to_ptx} to {!module_load_data_ex}. Currently, cudajit
converts the result of [nvrtc_compile_program] to human-readable PTX assembly before passing
it to the [cu_module_load_data_ex] function. *)
val compile_to_ptx :
cu_src:string -> name:string -> options:string list -> with_debug:bool -> compile_to_ptx_result
(** Performs a cascade of calls:
{{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv418nvrtcCreateProgramP12nvrtcProgramPKcPKciPPCKcPPCKc}
nvrtcCreateProgram},
{{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv419nvrtcCompileProgram12nvrtcProgramiPPCKc}
nvrtcCompileProgram},
{{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv411nvrtcGetPTX12nvrtcProgramPc}
nvrtcGetPTX}. If you store [cu_src] as a file, pass the file name including the extension as
[name]. [options] can include for example ["--use_fast_math"] or ["--device-debug"]. If
[with_debug] is [true], the compilation log is included even in case of compilation success
(see {!compilation_log}).
NOTE: [compile_to_ptx] prepends the CUDA include path to [options], so you don't need to. *)
val string_from_ptx : compile_to_ptx_result -> string
(** The stored PTX (i.e. NVIDIA assembly language) source, see
{{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv411nvrtcGetPTX12nvrtcProgramPc}
nvrtcGetPTX}. *)
val compilation_log : compile_to_ptx_result -> string option
(** The stored side output of the compilation, see
{{:https://docs.nvidia.com/cuda/nvrtc/index.html#_CPPv418nvrtcGetProgramLog12nvrtcProgramPc}
nvrtcGetProgramLog}. *)
end
type result [@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc6c391505e117393cc2558fff6bfc2e9}
enum CUresult}. *)
exception Cuda_error of { status : result; message : string }
(** Error codes returned by CUDA functions are converted to exceptions. The message stores a
snake-case variant of the offending CUDA function name (see {!Cuda_ffi.Bindings.Functions} for
the direct funciton bindings). *)
val is_success : result -> bool
val cuda_call_hook : (message:string -> status:result -> unit) option ref
(** The function called after every {!Cuda_ffi.Bindings.Functions} call. [message] is the snake-case
variant of the corresponding CUDA function name. *)
val init : ?flags:int -> unit -> unit
(** Must be called before any other function. Currently [flags] is unused. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__INITIALIZE.html#group__CUDA__INITIALIZE_1g0a2f1517e1bd8502c7194c3a8c134bc3}
cuInit}. *)
(** Managing a CUDA GPU device and its primary context. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE}
Device Management} and
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX}
Primary Context Management}. *)
module Device : sig
type t [@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g41ca2a24a242b36ef2ca77330b5fb72a}
CUdevice}. *)
val get_count : unit -> int
(** Returns the number of Nvidia devices. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g52b5ce05cb8c5fb6831b2c0ff2887c74}
cuDeviceGetCount}. *)
val get : ordinal:int -> t
(** Returns the given device. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g8bdd1cc7201304b01357b8034f6587cb}
cuDeviceGet}. *)
val primary_ctx_reset : t -> unit
(** Destroys all allocations and resets all state on the primary context. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1g5d38802e8600340283958a117466ce12}
cuDevicePrimaryCtxReset}. *)
val get_free_and_total_mem : unit -> int * int
(** Gets the free memory on the device of the current context according to the OS, and the total
memory on the device. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g808f555540d0143a331cc42aa98835c0}
cuMemGetInfo}. *)
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g578d7cf687ce20f7e99468e8c14e22de}
CUdevice_P2PAttribute}. *)
type p2p_attribute =
| PERFORMANCE_RANK of int
| ACCESS_SUPPORTED of bool
| NATIVE_ATOMIC_SUPPORTED of bool
| CUDA_ARRAY_ACCESS_SUPPORTED of bool
[@@deriving sexp]
val get_p2p_attributes : dst:t -> src:t -> p2p_attribute list
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g4c55c60508f8eba4546b51f2ee545393}
cuDeviceGetP2PAttribute}. *)
val can_access_peer : dst:t -> src:t -> bool
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g496bdaae1f632ebfb695b99d2c40f19e}
cuDeviceCanAccessPeer}. *)
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g637aab2eadb52e1c1c048b8bad9592d1}
CUcomputemode}. *)
type computemode =
| DEFAULT (** Multiple contexts allowed per device. *)
| PROHIBITED (** No contexts can be created on this device at this time. *)
| EXCLUSIVE_PROCESS
(** Only one context used by a single process can be present on this device at a time. *)
[@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf34334d1d6892847a5d05be7ca8db3c6}
CUflushGPUDirectRDMAWritesOptions}. *)
type flush_GPU_direct_RDMA_writes_options = HOST | MEMOPS [@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g450a23153d86fce0afe30e25d63caef9}
CUmemAllocationHandleType}. *)
type mem_allocation_handle_type = NONE | POSIX_FILE_DESCRIPTOR | WIN32 | WIN32_KMT | FABRIC
[@@deriving sexp]
type attributes = {
name : string;
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gef75aa30df95446a845f2a7b9fffbb7f}
cuDeviceGetName}. *)
max_threads_per_block : int;
max_block_dim_x : int;
max_block_dim_y : int;
max_block_dim_z : int;
max_grid_dim_x : int;
max_grid_dim_y : int;
max_grid_dim_z : int;
max_shared_memory_per_block : int; (** In bytes. *)
total_constant_memory : int; (** In bytes. *)
warp_size : int; (** In threads. *)
max_pitch : int; (** In bytes. *)
max_registers_per_block : int; (** 32-bit registers. *)
clock_rate : int; (** In kilohertz. *)
texture_alignment : int;
multiprocessor_count : int;
kernel_exec_timeout : bool;
integrated : bool;
can_map_host_memory : bool;
compute_mode : computemode;
maximum_texture1d_width : int;
maximum_texture2d_width : int;
maximum_texture2d_height : int;
maximum_texture3d_width : int;
maximum_texture3d_height : int;
maximum_texture3d_depth : int;
maximum_texture2d_layered_width : int;
maximum_texture2d_layered_height : int;
maximum_texture2d_layered_layers : int;
surface_alignment : int;
concurrent_kernels : bool;
(** Whether the device supports executing multiple kernels within the same context
simultaneously. *)
ecc_enabled : bool; (** Whether error correction is supported and enabled on the device. *)
pci_bus_id : int;
pci_device_id : int; (** PCI device (also known as slot) identifier of the device. *)
tcc_driver : bool;
memory_clock_rate : int; (** In kilohertz. *)
global_memory_bus_width : int; (** In bits. *)
l2_cache_size : int; (** In bytes. *)
max_threads_per_multiprocessor : int;
async_engine_count : int;
unified_addressing : bool;
maximum_texture1d_layered_width : int;
maximum_texture1d_layered_layers : int;
maximum_texture2d_gather_width : int;
maximum_texture2d_gather_height : int;
maximum_texture3d_width_alternate : int;
maximum_texture3d_height_alternate : int;
maximum_texture3d_depth_alternate : int;
pci_domain_id : int;
texture_pitch_alignment : int;
maximum_texturecubemap_width : int;
maximum_texturecubemap_layered_width : int;
maximum_texturecubemap_layered_layers : int;
maximum_surface1d_width : int;
maximum_surface2d_width : int;
maximum_surface2d_height : int;
maximum_surface3d_width : int;
maximum_surface3d_height : int;
maximum_surface3d_depth : int;
maximum_surface1d_layered_width : int;
maximum_surface1d_layered_layers : int;
maximum_surface2d_layered_width : int;
maximum_surface2d_layered_height : int;
maximum_surface2d_layered_layers : int;
maximum_surfacecubemap_width : int;
maximum_surfacecubemap_layered_width : int;
maximum_surfacecubemap_layered_layers : int;
maximum_texture2d_linear_width : int;
maximum_texture2d_linear_height : int;
maximum_texture2d_linear_pitch : int; (** In bytes. *)
maximum_texture2d_mipmapped_width : int;
maximum_texture2d_mipmapped_height : int;
compute_capability_major : int;
compute_capability_minor : int;
maximum_texture1d_mipmapped_width : int;
stream_priorities_supported : bool;
global_l1_cache_supported : bool;
local_l1_cache_supported : bool;
max_shared_memory_per_multiprocessor : int; (** In bytes. *)
max_registers_per_multiprocessor : int; (** 32-bit registers. *)
managed_memory : bool;
multi_gpu_board : bool;
multi_gpu_board_group_id : int;
host_native_atomic_supported : bool;
single_to_double_precision_perf_ratio : int;
pageable_memory_access : bool;
(** Device supports coherently accessing pageable memory without calling cudaHostRegister.
*)
concurrent_managed_access : bool;
compute_preemption_supported : bool;
can_use_host_pointer_for_registered_mem : bool;
cooperative_launch : bool;
max_shared_memory_per_block_optin : int;
can_flush_remote_writes : bool;
host_register_supported : bool;
pageable_memory_access_uses_host_page_tables : bool;
direct_managed_mem_access_from_host : bool;
virtual_memory_management_supported : bool;
handle_type_posix_file_descriptor_supported : bool;
handle_type_win32_handle_supported : bool;
handle_type_win32_kmt_handle_supported : bool;
max_blocks_per_multiprocessor : int;
generic_compression_supported : bool;
max_persisting_l2_cache_size : int; (** In bytes. *)
max_access_policy_window_size : int; (** For [CUaccessPolicyWindow::num_bytes]. *)
gpu_direct_rdma_with_cuda_vmm_supported : bool;
reserved_shared_memory_per_block : int; (** In bytes. *)
sparse_cuda_array_supported : bool;
read_only_host_register_supported : bool;
timeline_semaphore_interop_supported : bool;
memory_pools_supported : bool;
gpu_direct_rdma_supported : bool;
(** See {{:https://docs.nvidia.com/cuda/gpudirect-rdma/} GPUDirect RDMA}. *)
gpu_direct_rdma_flush_writes_options : flush_GPU_direct_RDMA_writes_options list;
gpu_direct_rdma_writes_ordering : bool;
mempool_supported_handle_types : mem_allocation_handle_type list;
(** Handle types supported with mempool based IPC. *)
cluster_launch : bool;
deferred_mapping_cuda_array_supported : bool;
can_use_64_bit_stream_mem_ops : bool;
can_use_stream_wait_value_nor : bool;
dma_buf_supported : bool;
ipc_event_supported : bool;
mem_sync_domain_count : int; (** Number of memory domains the device supports. *)
tensor_map_access_supported : bool;
unified_function_pointers : bool;
multicast_supported : bool; (** Device supports switch multicast and reduction operations. *)
}
[@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266}
cuDeviceGetAttribute}. *)
val get_attributes : t -> attributes
(** Populates all the device attributes. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266}
cuDeviceGetAttribute}. *)
end
(** All CUDA tasks are run under a context, usually under the current context. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX} Context
Management}. *)
module Context : sig
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g9f889e28a45a295b5c8ce13aa05f6cd4}
enum CUctx_flags}. *)
type flag =
| SCHED_AUTO (** Automatic scheduling. *)
| SCHED_SPIN (** Instruct CUDA to actively spin when waiting for results from the GPU. *)
| SCHED_YIELD (** Instruct CUDA to yield its thread when waiting for results from the GPU. *)
| SCHED_BLOCKING_SYNC (** Set blocking synchronization as default scheduling. *)
| SCHED_MASK
| MAP_HOST (** Deprecated: it is always present regardless of passed config. *)
| LMEM_RESIZE_TO_MAX (** Keep local memory allocation after launch. *)
| COREDUMP_ENABLE (** Trigger coredumps from exceptions in this context. *)
| USER_COREDUMP_ENABLE (** Enable user pipe to trigger coredumps in this context. *)
| SYNC_MEMOPS (** Ensure synchronous memory operations on this context will synchronize. *)
[@@deriving sexp]
type flags = flag list [@@deriving sexp]
type t [@@deriving sexp_of]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9}
CUcontext}. *)
val create : flags -> Device.t -> t
(** NOTE: In most cases it is recommended to use {!get_primary} instead! The context is pushed to
the CPU-thread-local stack. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g65dc0012348bc84810e2103a40d8e2cf}
cuCtxCreate}
The context value is finalized using
{{:https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/html/group__CUDA__CTX_g27a365aebb0eb548166309f58a1e8b8e.html}
ctxDestroy}. *)
val get_flags : unit -> flags
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1gf81eef983c1e3b2ef4f166d7a930c86d}
cuCtxGetFlags}. *)
val get_primary : Device.t -> t
(** The context is {i not} pushed to the stack. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1g9051f2d5c31501997a6cb0530290a300}
cuDevicePrimaryCtxRetain}.
The context is finalized using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1gf2a8bc16f8df0c88031f6a1ba3d6e8ad}
cuDevicePrimaryCtxRelease}. The underlying CUDA context will be reset once the last reference
to it is released. *)
val get_device : unit -> Device.t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g4e84b109eba36cdaaade167f34ae881e}
cuCtxGetDevice}. *)
val pop_current : unit -> t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g2fac188026a062d92e91a8687d0a7902}
cuCtxPopCurrent}. *)
val get_current : unit -> t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g8f13165846b73750693640fb3e8380d0}
cuCtxGetCurrent}. *)
val push_current : t -> unit
(** Pushes a context on the current CPU thread. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1gb02d4c850eb16f861fe5a29682cc90ba}
cuCtxPushCurrent}. *)
val set_current : t -> unit
(** If there exists a CUDA context stack on the calling CPU thread, this will replace the top of
that stack with ctx. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1gbe562ee6258b4fcc272ca6478ca2a2f7}
cuCtxSetCurrent}. *)
val synchronize : unit -> unit
(** Blocks for the current context's tasks to complete. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g7a54725f28d34b8c6299f0c6ca579616}
cuCtxSynchronize}. *)
val disable_peer_access : t -> unit
(** Disables peer access between the current context and the given context. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g5b4b6936ea868d4954ce4d841a3b4810}
cuCtxDisablePeerAccess}. *)
val enable_peer_access : ?flags:Unsigned.uint -> t -> unit
(** Flags are unused. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g0889ec6728e61c05ed359551d67b3f5a}
cuCtxEnablePeerAccess}. *)
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1ge24c2d4214af24139020f1aecaf32665}
enum CUlimit}. *)
type limit =
| STACK_SIZE
| PRINTF_FIFO_SIZE
| MALLOC_HEAP_SIZE
| DEV_RUNTIME_SYNC_DEPTH (** GPU device runtime launch synchronize depth. *)
| DEV_RUNTIME_PENDING_LAUNCH_COUNT
| MAX_L2_FETCH_GRANULARITY (** Between 0 and 128, in bytes, it is a hint. *)
| PERSISTING_L2_CACHE_SIZE
[@@deriving sexp]
val set_limit : limit -> int -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g0651954dfb9788173e60a9af7201e65a}
cuCtxSetLimit}. *)
val get_limit : limit -> int
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html#group__CUDA__CTX_1g9f2d47d1745752aa16da7ed0d111b6a8}
cuCtxGetLimit}. *)
end
type bigstring = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
(** This module introduces the type of pointers into on-device global memory, and stream-independent
memory management functions. All functions from this module run synchronously. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM} Memory
Management}. *)
module Deviceptr : sig
type t [@@deriving sexp_of]
(** A pointer to a memory location on a device. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g183f7b0d8ad008ea2a5fd552537ace4e}
CUdeviceptr}. *)
val equal : t -> t -> bool
(** Compares the pointer values for equality. *)
val hash : t -> int
(** Converts the pointer to an OCaml int using {!Unsigned.UInt64.to_int} (truncating bits as
needed). *)
val string_of : t -> string
(** Hexadecimal representation of the pointer. *)
val mem_alloc : size_in_bytes:int -> t
(** The memory is aligned, is not cleared. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1gb82d2a09844a58dd9e744dc31e8aa467}
cuMemAlloc}.
The pointer is finalized using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g89b3f154e17cc89b6eea277dbdf5c93a}
cuMemFree}. This is safe
{{:https://stackoverflow.com/questions/70767180/cumemallocing-memory-in-one-cuda-context-and-freeing-it-in-another-why-does}
without needing to set the proper context}. *)
val mem_free : t -> unit
(** Double-freeing is prevented by a flag: multiple calls on the same [Deviceptr.t] are safe. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g89b3f154e17cc89b6eea277dbdf5c93a}
cuMemFree}. *)
val memcpy_H_to_D_unsafe : dst:t -> src:unit Ctypes.ptr -> size_in_bytes:int -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g4d32266788c440b0220b1a9ba5795169}
cuMemcpyHtoD}. *)
val memcpy_H_to_D :
?host_offset:int -> ?length:int -> dst:t -> src:('a, 'b, 'c) Bigarray.Genarray.t -> unit -> unit
(** Copies the bigarray (or its interval) into the device memory. [host_offset] and [length] are
in numbers of elements. See {!memcpy_H_to_D_unsafe}. *)
val alloc_and_memcpy : ('a, 'b, 'c) Bigarray.Genarray.t -> t
(** Combines {!mem_alloc} and {!memcpy_H_to_D}. *)
val memcpy_D_to_H_unsafe : dst:unit Ctypes.ptr -> src:t -> size_in_bytes:int -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g3480368ee0208a98f75019c9a8450893}
cuMemcpyDtoH}. *)
val memcpy_D_to_H :
?host_offset:int -> ?length:int -> dst:('a, 'b, 'c) Bigarray.Genarray.t -> src:t -> unit -> unit
(** Copies from the device memory into the bigarray (or its interval). [host_offset] and [length]
are in numbers of elements. See {!memcpy_D_to_H_unsafe}. *)
val memcpy_D_to_D :
?kind:('a, 'b) Bigarray.kind ->
?length:int ->
?size_in_bytes:int ->
dst:t ->
src:t ->
unit ->
unit
(** Copies between two memory positions on the same device. The size to copy can optionally be
provided in numbers of elements via [kind] and [length]. Provide either both [kind] and
[length], or just [size_in_bytes]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b}
cuMemcpyDtoD}. *)
val memcpy_peer :
?kind:('a, 'b) Bigarray.kind ->
?length:int ->
?size_in_bytes:int ->
dst:t ->
dst_ctx:Context.t ->
src:t ->
src_ctx:Context.t ->
unit ->
unit
(** Copies between memory positions on two different devices. The size to copy can optionally be
provided in numbers of elements via [kind] and [length]. Provide either both [kind] and
[length], or just [size_in_bytes]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1ge1f5c7771544fee150ada8853c7cbf4a}
cuMemcpyPeer}. *)
val memset_d8 : t -> Unsigned.uchar -> length:int -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g6e582bf866e9e2fb014297bfaf354d7b}
cuMemsetD8}. *)
val memset_d16 : t -> Unsigned.ushort -> length:int -> unit
(** [length] is in number of elements. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g7d805e610054392a4d11e8a8bf5eb35c}
cuMemsetD16}. *)
val memset_d32 : t -> Unsigned.uint32 -> length:int -> unit
(** [length] is in number of elements. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g983e8d8759acd1b64326317481fbf132}
cuMemsetD32}. *)
end
(** A CUDA module type represents CUDA code that's ready to execute, i.e. is loaded. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MODULE.html#group__CUDA__MODULE}
Module Management}. *)
module Module : sig
(** Compute device classes. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1ge443308cb7ed1d52b85b487305779184}
enum CUjit_target}. *)
type jit_target =
| COMPUTE_30
| COMPUTE_32
| COMPUTE_35
| COMPUTE_37
| COMPUTE_50
| COMPUTE_52
| COMPUTE_53
| COMPUTE_60
| COMPUTE_61
| COMPUTE_62
| COMPUTE_70
| COMPUTE_72
| COMPUTE_75
| COMPUTE_80
| COMPUTE_86
| COMPUTE_87
| COMPUTE_89
| COMPUTE_90
| COMPUTE_90A (** Compute device class 9.0 with accelerated features. *)
[@@deriving sexp]
(** Cubin matching fallback strategies. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4a1a92ea65e18b06907b981848c282f2}
CUjit_fallback}. *)
type jit_fallback = PREFER_PTX | PREFER_BINARY [@@deriving sexp]
(** Caching modes for dlcm. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gce011cfe2d6b1fb734da48a6cf48fd04}
CUjit_cacheMode}. *)
type jit_cache_mode =
| NONE
| CG (** Compile with L1 cache disabled. *)
| CA (** Compile with L1 cache enabled. *)
[@@deriving sexp]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g5527fa8030d5cabedc781a04dbd1997d}
CUjit_option}. *)
type jit_option =
| MAX_REGISTERS of int (** Max number of registers that a thread may use. *)
| THREADS_PER_BLOCK of int
(** Specifies minimum number of threads per block to target compilation for or returns the
number of threads the compiler actually targeted. Cannot be combined with [TARGET]. *)
| WALL_TIME of { milliseconds : float } (** *)
| INFO_LOG_BUFFER of bigstring
| ERROR_LOG_BUFFER of bigstring
| OPTIMIZATION_LEVEL of int
(** 0 to 4, with 4 being the default and highest level of optimizations. *)
| TARGET_FROM_CUCONTEXT
| TARGET of jit_target
| FALLBACK_STRATEGY of jit_fallback
| GENERATE_DEBUG_INFO of bool (** Helpful for cuda-gdb. *)
| LOG_VERBOSE of bool
| GENERATE_LINE_INFO of bool (** Helpful for cuda-gdb. *)
| CACHE_MODE of jit_cache_mode
| POSITION_INDEPENDENT_CODE of bool
[@@deriving sexp]
type func
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gba6128b948022f495706d93bc2cea9c8}
CUfunction}. *)
type t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g9e4ef4dcfba4662b2299acb8d049a1ef}
CUmodule}. *)
val load_data_ex : Nvrtc.compile_to_ptx_result -> jit_option list -> t
(** Currently, the image passed via this call is the PTX source. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MODULE.html#group__CUDA__MODULE_1g9e8047e9dbf725f0cd7cafd18bfd4d12}
cuModuleLoadDataEx}.
The module is finalized using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MODULE.html#group__CUDA__MODULE_1g8ea3d716524369de3763104ced4ea57b}
cuModuleUnload}. The finalizer captures the context when [load_data_ex] is called to
temporarily push it on the stack for unloading. *)
val get_function : t -> name:string -> func
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MODULE.html#group__CUDA__MODULE_1ga52be009b0d4045811b30c965e1cb2cf}
cuModuleGetFunction}. *)
val get_global : t -> name:string -> Deviceptr.t * Unsigned.size_t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MODULE.html#group__CUDA__MODULE_1gf3e43672e26073b1081476dbf47a86ab}
cuModuleGetGlobal}. *)
end
(** CUDA streams are independent FIFO schedules for CUDA tasks, allowing them to potentially run in
parallel. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM}
Stream Management}. *)
module Stream : sig
type t [@@deriving sexp_of]
(** Stores a stream pointer and manages lifetimes of kernel launch arguments. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1gb946c7f02e09efd788a204718015d88a}
CUstream}. *)
val mem_alloc : t -> size_in_bytes:int -> Deviceptr.t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g13413273e84a641bce1929eae9e6501f}
cuMemAllocAsync}.
The pointer is finalized using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g41acf4131f672a2a75cd93d3241f10cf}
cuMemFreeAsync}. *)
val mem_free : t -> Deviceptr.t -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g41acf4131f672a2a75cd93d3241f10cf}
cuMemFreeAsync}. *)
val memcpy_H_to_D_unsafe :
dst:Deviceptr.t -> src:unit Ctypes.ptr -> size_in_bytes:int -> t -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g1572263fe2597d7ba4f6964597a354a3}
cuMemcpyHtoDAsync}. *)
val memcpy_H_to_D :
?host_offset:int ->
?length:int ->
dst:Deviceptr.t ->
src:('a, 'b, 'c) Bigarray.Genarray.t ->
t ->
unit
(** Copies the bigarray (or its interval) into the device memory asynchronously. [host_offset] and
[length] are in numbers of elements. See {!memcpy_H_to_D_async_unsafe}. *)
(** Parameters to pass to a kernel. *)
type kernel_param =
| Tensor of Deviceptr.t
| Int of int (** Passed as C [int]. *)
| Size_t of Unsigned.size_t
| Single of float (** Passed as C [float]. *)
| Double of float (** Passed as C [double]. *)
[@@deriving sexp_of]
val no_stream : t
(** The NULL stream which is the main synchronization stream of a device. Manages lifetimes of the
corresponding kernel launch parameters. *)
val launch_kernel :
Module.func ->
grid_dim_x:int ->
?grid_dim_y:int ->
?grid_dim_z:int ->
block_dim_x:int ->
?block_dim_y:int ->
?block_dim_z:int ->
shared_mem_bytes:int ->
t ->
kernel_param list ->
unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXEC.html#group__CUDA__EXEC_1gb8f3dc3031b40da29d5f9a7139e52e15}
cuLaunchKernel}. *)
val memcpy_D_to_H_unsafe :
dst:unit Ctypes.ptr -> src:Deviceptr.t -> size_in_bytes:int -> t -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362}
cuMemcpyDtoHAsync}. *)
val memcpy_D_to_H :
?host_offset:int ->
?length:int ->
dst:('a, 'b, 'c) Bigarray.Genarray.t ->
src:Deviceptr.t ->
t ->
unit
(** Copies from the device memory into the bigarray (or its interval) asynchronously.
[host_offset] and [length] are in numbers of elements. See {!memcpy_D_to_H_unsafe} and
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362}
cuMemcpyDtoHAsync}. *)
val memcpy_D_to_D :
?kind:('a, 'b) Bigarray.kind ->
?length:int ->
?size_in_bytes:int ->
dst:Deviceptr.t ->
src:Deviceptr.t ->
t ->
unit
(** Copies between two memory positions on the same device asynchronously. The size to copy can
optionally be provided in numbers of elements via [kind] and [length]. Provide either both
[kind] and [length], or just [size_in_bytes]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8}
cuMemcpyDtoDAsync}. *)
val memcpy_peer :
?kind:('a, 'b) Bigarray.kind ->
?length:int ->
?size_in_bytes:int ->
dst:Deviceptr.t ->
dst_ctx:Context.t ->
src:Deviceptr.t ->
src_ctx:Context.t ->
t ->
unit
(** Copies between memory positions on two different devices asynchronously. The size to copy can
optionally be provided in numbers of elements via [kind] and [length]. Provide either both
[kind] and [length], or just [size_in_bytes]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g82fcecb38018e64b98616a8ac30112f2}
cuMemcpyPeerAsync}. *)
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g17c5d5f9b585aa2d6f121847d1a78f4c}
CUmemAttach_flags}. *)
type attach_mem =
| GLOBAL (** Memory can be accessed by any stream on any device. *)
| HOST (** Memory cannot be accessed from devices. *)
| SINGLE_stream (** Memory can only be accessed by a single stream. *)
[@@deriving sexp]
val attach_mem : t -> Deviceptr.t -> int -> attach_mem -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6e468d680e263e7eba02a56643c50533}
cuStreamAttachMemAsync}. *)
val create : ?non_blocking:bool -> ?lower_priority:int -> unit -> t
(** Lower [lower_priority] numbers represent higher priorities, the default is [0]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g95c1a8c7c3dacb13091692dd9c7f7471}
cuStreamCreateWithPriority}.
The stream value is finalized using
{{:https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/html/group__CUDA__STREAM_g244c8833de4596bcd31a06cdf21ee758.html}
cuStreamDestroy}. This is meant to be safe
{{:https://stackoverflow.com/questions/64663943/how-to-destroy-a-stream-that-was-created-on-a-specific-device}
without needing to set the proper context}. *)
val get_context : t -> Context.t
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g1107907025eaa3387fdc590a9379a681}
cuStreamGetCtx}. *)
val get_id : t -> Unsigned.uint64
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g5dafd2b6f48caeb13d5110a7f21e60e3}
cuStreamGetId}. *)
val is_ready : t -> bool
(** Returns [false] when the querying status is [CUDA_ERROR_NOT_READY], and [true] if it is
[CUDA_SUCCESS]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g1b0d24bbe97fa68e4bc511fb6adfeb0b}
cuStreamQuery}. *)
val synchronize : t -> unit
(** Waits until a stream's tasks are completed. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g15e49dd91ec15991eb7c0a741beb7dad}
cuStreamSynchronize}. *)
val memset_d8 : Deviceptr.t -> Unsigned.uchar -> length:int -> t -> unit
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1gaef08a7ccd61112f94e82f2b30d43627}
cuMemsetD8Async}. *)
val memset_d16 : Deviceptr.t -> Unsigned.ushort -> length:int -> t -> unit
(** [length] is in number of elements. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1gf731438877dd8ec875e4c43d848c878c}
cuMemsetD16Async}. *)
val memset_d32 : Deviceptr.t -> Unsigned.uint32 -> length:int -> t -> unit
(** [length] is in number of elements. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1g58229da5d30f1c0cdf667b320ec2c0f5}
cuMemsetD32Async}. *)
val total_unreleased_unfinished_delimited_events : t -> int * int * int
(** Debug information about delimited events carried by the stream: total, unreleased (i.e. not
destroyed), unfinished. *)
val get_total_live_streams : unit -> int
(** The total non-garbage-collected streams across all devices. *)
end
(** CUDA events can be used for synchronization between streams without blocking the CPU, and to
time the on-device execution. See:
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT}
Event Management}. *)
module Event : sig
type t [@@deriving sexp_of]
(** See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g6d740185cf0953636d4ae37f68d7559b}
CUevent}. *)
val create : ?blocking_sync:bool -> ?enable_timing:bool -> ?interprocess:bool -> unit -> t
(** Creates an event {i for the current context}. All of [blocking_sync], [enable_timing] and
[interprocess] are by default false. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g450687e75f3ff992fe01662a43d9d3db}
cuEventCreate} and
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html#group__CUDA__TYPES_1g5ae04079c671c8e659a3a27c7b23f629}
CUevent_flags}.
The event value is finalized using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g593ec73a8ec5a5fc031311d3e4dca1ef}
cuEventDestroy}. This is safe because the event resources are only released when the event
completes, so waiting streams are not affected by the finalization. Note: I assume destroying
an event is safe without setting the proper context. *)
val elapsed_time : start:t -> end_:t -> float
(** Returns (an upper bound on) elapsed time in milliseconds with a resolution of around 0.5
microseconds. Both events must have completed ([query start = true] and [query end_ = true])
before calling [elapsed_time]. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1gdfb1178807353bbcaa9e245da497cf97}
cuEventElapsedTime}. *)
val query : t -> bool
(** Returns [true] precisely when all work captured by the most recent call to {!record} has been
completed. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g6f0704d755066b0ee705749ae911deef}
cuEventQuery}. *)
val record : ?external_:bool -> t -> Stream.t -> unit
(** Captures in the event the contents of the stream, i.e. the work scheduled on it. [external_]
defaults to false (cudajit as of version 0.5 does not expose stream capture). See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1ge577e0c132d9c4961f220d79f6762c4b}
cuEventRecordWithFlags}. *)
val synchronize : t -> unit
(** Blocks until the completion of all work captured in the event by the most recent call to
{!record}. NOTE: if the event was created without [~blocking_sync:true], then the CPU thread
will busy-wait. See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g9e520d34e51af7f5375610bca4add99c}
cuEventSynchronize}. *)
val wait : ?external_:bool -> Stream.t -> t -> unit
(** Future work submitted to the stream will wait for the completion of all work captured in the
event by the most recent call to {!record}. [external_] defaults to false (cudajit as of
version 0.5 does not expose stream capture). See
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6a898b652dfc6aa1d5c8d97062618b2f}
cuStreamWaitEvent}. *)
end
(** This module builds on top of functionality more directly exposed by {!Event}. It optimizes
resource management for use-cases where events are not reused: there's only one call to
{!Event.record}, and it's immediately after {!Event.create}. *)
module Delimited_event : sig
type t [@@deriving sexp_of]
(** An delimited event encapsulates {!Event.t} and is owned by a stream. It records its owner at
creation, and gets released (using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g593ec73a8ec5a5fc031311d3e4dca1ef}
cuEventDestroy}) when either it or its owner are synchronized (or if neither happens, when it
is garbage-collected). *)
val record : ?blocking_sync:bool -> ?interprocess:bool -> ?external_:bool -> Stream.t -> t
(** Combines {!Event.create} and {!Event.record} to create an event owned by the given stream. *)
val is_released : t -> bool
(** Returns true if the delimited event is already released using
{{:https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EVENT.html#group__CUDA__EVENT_1g593ec73a8ec5a5fc031311d3e4dca1ef}
cuEventDestroy}. The event will be released by {!synchronize} and {!Stream.synchronize}. *)
val query : t -> bool
(** See {!Event.query}. [query event] returns [true] when [event] is already released. *)
val synchronize : t -> unit
(** See {!Event.synchronize}. [synchronize event] is a no-op if [event] is already released. *)
val wait : ?external_:bool -> Stream.t -> t -> unit
(** See {!Event.wait}. [wait stream event] is a no-op if [event] is already released. *)
end