forked from paintedstork/eBird-filter-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.R
319 lines (255 loc) · 11.4 KB
/
helper.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
library(plyr)
library(sp)
library(rgdal)
library(reshape2)
library(data.table)
library(tidyr)
#' Returns lists filtered by location
#'
#' @param lists eBird lsits
#' @param state One of the states in the eBird records file
#' @param region One of the regions in the shape file
#' @return eBird list for the specific location
#' @examples
#' getLocationFilteredLists(ebd_lists, 'Kerala', 'India--Kerala--Alappuzha')
getLocationFilteredLists <- function (lists, state, filterRegion) {
print( paste("GetLocationFilteredLists",state,filterRegion))
if(state !='None')
{
lists <- lists [which(lists$STATE.CODE ==
unique(g_states$STATE.CODE[ g_states$STATE==state ])), ]
print(paste("StateFiltered", nrow(lists)))
}
if(any(g_filters$FILTER == filterRegion))
{ # Filter only lists that belong to a particular arbitrary polygon
lists <- lists [which(lists$FILTER == which(g_filters$FILTER == filterRegion)), ]
}
else
{ # Filter only lists that do not belong to any arbitrary polygon
lists <- lists [lists$FILTER == 0, ]
}
print(paste("GeoFiltered", nrow(lists)))
if(any (g_admin_filters$Filter.Name == filterRegion))
{ # Find out all matches for a filter name. It can be state or district codes
admin_filter_match <- grep (filterRegion, g_admin_filters$Filter.Name, fixed = TRUE)
# Bind the lists that match with the state or district code
lists <- rbind (
lists [which(lists$STATE.CODE %in% g_admin_filters [admin_filter_match, ]$Code), ],
lists [which(lists$COUNTY.CODE %in% g_admin_filters [admin_filter_match, ]$Code), ]
)
}
print(paste("Final Filtered", nrow(lists)))
return (lists)
}
#' Returns duration in minutes at nth percentile based on sorted order of list duration
#'
#' @param q 0..100 as percentile
#' @param state One of the states in the eBird records file
#' @param region One of the regions in the shape file
#' @return Duration in minutes at the nth percentile
#' @examples
#' getMinutes(75, 'Kerala', 'India--Kerala--Alappuzha')
getMinutes <- function(q, state, filterRegion) {
print(q)
print(state)
print(filterRegion)
m_ebd_lists <-g_lists
# Filter lists by state and filter shape
m_ebd_lists <- getLocationFilteredLists (m_ebd_lists, state, filterRegion)
# Convert back to data frame and filter only duration
m_ebd_lists <- subset(m_ebd_lists, select = c("DURATION.MINUTES"))
# Remove Null duration
# m_ebd_lists[is.na(m_ebd_lists)] <- 0
# Order duration ascending
# m_ebd_lists <- m_ebd_lists [order(m_ebd_lists$DURATION.MINUTES),]
# Bug fix 12052019. Remove null duration and sort by minutes
m_ebd_lists <- drop_na (m_ebd_lists) %>% arrange (DURATION.MINUTES)
# Return requested quantile
return (quantile (m_ebd_lists$DURATION.MINUTES, q/100))
}
#
#
#' Generates the filter based on region shape and eBird data using a set of configurations
#'
#' @param state state/province code
#' @param filterRegion Attribute name in the shape file
#' @param filterPercentile Percentile of records of a species to be considered as filter limit
#' @param duration Maximum list duration to be considered or filter calculations
#' @param fortnightly Whether to generate filters per fortnightly or monthly
#' @param makeXAs1 Whether to consider records marked as X as 1 or ignore
#' @return filter dataframe with species as rows and fortnight/month as column with values in cells.
#' @examples
#' generateFilter ('IN-KL', 'India--Kerala--Alappuzha')
generateFilter <- function(state='None', filterRegion, filterPercentile=90, duration=240, fortnightly=TRUE, makeXAs1=FALSE, dataView=1)
{
print(paste("generateFilter", state, filterRegion, filterPercentile, duration, fortnightly, makeXAs1, dataView))
# filter <- as.data.frame (rbind( c("Bar-headed Goose", 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2),
# c("Lesser Whistling Duck", 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2),
# c("Comb Duck", 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2) ))
# return (filter)
# Copy locally
f_ebd_lists <-g_lists
# Filter lists by state and filter shape
f_ebd_lists <- getLocationFilteredLists (f_ebd_lists, state, filterRegion)
if(nrow(f_ebd_lists) < 1)
{
return (NULL)
}
#All lists > duration hours. Note, this comes from slider bar input
f_ebd_lists <- f_ebd_lists [which(f_ebd_lists$DURATION.MINUTES < duration+1), ]
# Add a fortnight field. There are 12 months a year, 24 fortnights. E.g. 5.5 is 11th fortnight in a year
# E.g. 14th of September = 0.5 * int (14/30 + 0.5) = 0. 15th of February = 0.5 * int (15/30 + 0.5) = 0.5
# f_ebd_lists <- within (f_ebd_lists, Fortnight <- as.numeric(format(as.Date(OBSERVATION.DATE),"%m")) +
# fortnightly * 0.5 * as.integer(0.5 + as.numeric(format(as.Date(OBSERVATION.DATE),"%d"))/daysInMonth (as.integer(format(as.Date(OBSERVATION.DATE),"%m")))))
f_ebd_lists <- within (f_ebd_lists, if (!fortnightly) Fortnight <- floor (Fortnight))
# Filter only relevant fields
f_ebd_lists <- subset(f_ebd_lists, select = c("UNIQUE_SAMPLING_ID","Fortnight", "ALL.SPECIES.REPORTED"))
# State caching optimization with lazy load of state records.
if( (g_current_state == state) || (state == "None"))
{
f_ebd_records <- g_records
}
else
{
# Load state records
f_ebd_records <- getRecords(state)
}
g_current_state = state
# f_ebd_records <- join(f_ebd_records, f_ebd_lists, type="inner", by = 'UNIQUE_SAMPLING_ID')
# Merge with lists
dt_ebd_records = as.data.table(f_ebd_records)
dt_ebd_lists = as.data.table(f_ebd_lists)
setkey(dt_ebd_records, UNIQUE_SAMPLING_ID)
setkey(dt_ebd_lists, UNIQUE_SAMPLING_ID)
# inner join - use `nomatch` argument
# f_ebd_records <- as.data.frame(dt_ebd_records[dt_ebd_lists, nomatch=0L, on = "UNIQUE_SAMPLING_ID"])
f_ebd_records <- as.data.table(dt_ebd_records[dt_ebd_lists, nomatch=0L, on = "UNIQUE_SAMPLING_ID"])
if(makeXAs1)
{
#Replace all X with 1
f_ebd_records[f_ebd_records=="X"]<-1
}
else
{
#Remove all "X" observations.
f_ebd_records <- f_ebd_records [which(f_ebd_records$OBSERVATION.COUNT != 'X'), ]
}
# Filter only relevant fields
f_ebd_records <- subset(f_ebd_records, select = c("TAXONOMIC.ORDER","OBSERVATION.COUNT", "Fortnight", "ALL.SPECIES.REPORTED"))
#f_ebd_records <- f_ebd_records [which(!is.na (f_ebd_records$Count)), ]
# Rename columns
colnames(f_ebd_records) <- c("TOrder", "Count", "Fortnight", "AllSpecies")
# print(paste("Before dcast", names(f_ebd_lists), nrow(f_ebd_lists)))
# Create a pivot with AllSpecies vs Fortnight for getting the complete and incomplete lists
# all_lists <- reshape2::dcast (f_ebd_lists, 'ALL.SPECIES.REPORTED' ~ Fortnight, value.var = "ALL.SPECIES.REPORTED", fun.aggregate = sum)
all_lists <- dcast.data.table (dt_ebd_lists, 'ALL.SPECIES.REPORTED' ~ Fortnight, value.var = "ALL.SPECIES.REPORTED", fun.aggregate = sum)
print("Pivot with AllSpecies vs Fortnight Created")
print(head(all_lists, 3))
# Make NA as 0
all_lists[is.na(all_lists)] <- 0
# all_lists[,-1] <- as.numeric(all_lists[,-1])
# print(paste("Before dcast", names(f_ebd_records), nrow(f_ebd_records)))
# Make Observation count as numeric
f_ebd_records <- transform(f_ebd_records, Count = as.numeric(as.character(Count)))
# Create a pivot with TOrder vs Fortnight and values as 90 percentile. Note, this will come from slider bar
# filter <- reshape2::dcast (f_ebd_records, TOrder ~ Fortnight, value.var = "Count", fun.aggregate = quantile, filterPercentile/100)
filter <- dcast.data.table (f_ebd_records, TOrder ~ Fortnight, value.var = "Count", sep = "_", fun.aggregate = quantile, filterPercentile/100)
# print("Pivot with TOrder vs Fortnight Created")
# print(head(filter, 3))
# Create a pivot with TOrder vs Fortnight and number of complete lists where it was reported
# c_lists <- reshape2::dcast (f_ebd_records, TOrder ~ Fortnight, value.var = "AllSpecies", fun.aggregate = sum)
c_lists <- dcast.data.table (f_ebd_records, TOrder ~ Fortnight, value.var = "AllSpecies", sep = "_", fun.aggregate = sum)
# print("Pivot with TOrder vs Fortnight and number of complete lists Created")
# print(head(c_lists, 3))
# Make NA as 0
c_lists[is.na(c_lists)] <- 0
filter <- as.data.frame(filter)
c_lists <- as.data.frame (c_lists)
all_lists <- as.data.frame (all_lists)
# Rounding filter values
filter[,-c(1)] <-round(filter[,-c(1)],0)
# Make NA as 0
filter[is.na(filter)] <- 0
if(dataView == 1) {
# Do Nothing
}
else if (dataView == 2) {
filter <- c_lists
}
else {
for (col in 2:ncol(filter))
{
filter[,col] <- paste(filter[,col],"\n(",c_lists[,col],")",sep='')
}
}
# Merge with species names
f_ebd_species <- g_species
colnames(f_ebd_species) <- c("TOrder", "Species")
# setkey(f_ebd_species, TOrder)
# setkey(filter, TOrder)
filter <- join(f_ebd_species, filter, type = "right", by = 'TOrder')
# print("Joined TOrder and Species Names")
# print(head(filter,3))
# write.csv2(filter, "filter.csv")
filter$TOrder <- NULL
colnames(all_lists)[1] <- "Species"
all_lists$Species[1]="No Complete Lists"
filter <- rbind (all_lists,filter)
# filter <- rbindlist (list (all_lists,filter))
# print("Binded all_lists with filter")
# print(head(filter,3))
# Make NA as 0
filter[is.na(filter)] <- 0
# print("Removed NA")
# print(head(filter,3))
# Bugfix. Removing duplicate entries in filter
filter <- filter [!duplicated(filter), ]
# print("Removed duplicates in filter")
# print(head(filter,3))
#Based on Fortnight or Month, assigning characters. Can this dirty logic be normalised?
if (fortnightly)
{
for (col in 1:24)
{
if(col%%2)
{
colname <- as.character(as.integer((col+1)/2))
}
else
{
colname <- paste(as.character(as.integer((col+1)/2)),'.',as.character(as.integer(((col+1)%%2)*5)),sep='')
}
if (! (colname %in% colnames(filter)))
{
filter[colname] <- '-'
}
col <-col + 1
}
filter <- filter[c("Species", "1", "1.5", "2", "2.5","3","3.5", "4", "4.5", "5","5.5", "6","6.5", "7","7.5", "8","8.5", "9","9.5", "10","10.5", "11","11.5", "12", "12.5")]
colnames (filter) <- c("Species", "J","J","F","F","M","M","A","A","M","M","J","J","J","J","A","A","S","S","O","O","N","N","D","D")
}
else
{
for (col in 1:12)
{
colname <- as.character(col)
# print(colname)
# print(colnames(filter))
if (! (colname %in% colnames(filter)))
{
# print("May be going to crash here")
filter[colname] <- '-'
}
col <-col + 1
}
# print("Assiging filters")
filter <- filter[c("Species", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12")]
# print("Assiging colnames")
colnames (filter) <- c("Species", "J","F","M","A","M","J","J","A","S","O","N","D")
# print(head(filter,3))
}
# print("Added Column names")
# print(head(filter,3))
# write.csv2(filter, "filter_final.csv")
return (filter)
}