forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixDeterminantLaplaceExpansion.java
144 lines (117 loc) · 3.91 KB
/
MatrixDeterminantLaplaceExpansion.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/**
* This is an implementation of finding the determinant of an nxn matrix using Laplace/cofactor
* expansion. Although this method is mathematically beautiful, it is computationally intensive and
* not practical for matrices beyond the size of 7-8.
*
* <p>Time Complexity: ~O((n+2)!)
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.linearalgebra;
public class MatrixDeterminantLaplaceExpansion {
// Define a small value of epsilon to compare double values
static final double EPS = 0.00000001;
public static void main(String[] args) {
double[][] m = {{6}};
System.out.println(determinant(m)); // 6
m =
new double[][] {
{1, 2},
{3, 4}
};
System.out.println(determinant(m)); // -2
m =
new double[][] {
{1, -2, 3},
{4, -5, 6},
{7, -8, 10}
};
System.out.println(determinant(m)); // 3
m =
new double[][] {
{1, -2, 3, 7},
{4, -5, 6, 2},
{7, -8, 10, 3},
{-8, 10, 3, 2}
};
System.out.println(determinant(m)); // -252
m =
new double[][] {
{1, -2, 3, 7},
{4, -5, 6, 2},
{7, -8, 10, 3},
{-8, 10, 3, 2}
};
System.out.println(determinant(m)); // -252
m =
new double[][] {
{1, -2, 3, 7, 12},
{4, -5, 6, 2, 4},
{7, -8, 10, 3, 1},
{-8, 10, 8, 3, 2},
{5, 5, 5, 5, 5}
};
System.out.println(determinant(m)); // -27435
System.out.println();
for (int n = 1; ; n++) {
m = new double[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) m[i][j] = Math.floor(Math.random() * 10);
System.out.printf("Found determinant of %dx%d matrix to be: %.4f\n", n, n, determinant(m));
}
}
// Given an n*n matrix, this method finds the determinant using Laplace/cofactor expansion.
// Time Complexity: ~O((n+2)!)
public static double determinant(double[][] matrix) {
final int n = matrix.length;
// Use closed form for 1x1 determinant
if (n == 1) return matrix[0][0];
// Use closed form for 2x2 determinant
if (n == 2) return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
// For 3x3 matrices and up use Laplace/cofactor expansion
return laplace(matrix);
}
// This method uses cofactor expansion to compute the determinant
// of a matrix. Unfortunately, this method is very slow and uses
// A LOT of memory, hence it is not too practical for large matrices.
private static double laplace(double[][] m) {
final int n = m.length;
// Base case is 3x3 determinant
if (n == 3) {
double a = m[0][0], b = m[0][1], c = m[0][2];
double d = m[1][0], e = m[1][1], f = m[1][2];
double g = m[2][0], h = m[2][1], i = m[2][2];
return a * (e * i - f * h) - b * (d * i - f * g) + c * (d * h - e * g);
}
int det = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
double c = m[i][j];
if (Math.abs(c) > EPS) {
double[][] newMatrix = constructMatrix(m, j);
double parity = ((j & 1) == 0) ? +1 : -1;
det += parity * c * laplace(newMatrix);
}
}
}
return det;
}
// Constructs a matrix one dimension smaller than the last by
// excluding the top row and some selected column. This
// method ends up consuming a lot of space we called recursively multiple times
// since it allocates meory for a new matrix.
private static double[][] constructMatrix(double[][] m, int skipColumn) {
int n = m.length;
double[][] newMatrix = new double[n - 1][n - 1];
int ii = 0;
for (int i = 1; i < n; i++, ii++) {
int jj = 0;
for (int j = 0; j < n; j++) {
if (j == skipColumn) continue;
double v = m[i][j];
newMatrix[ii][jj++] = v;
}
}
return newMatrix;
}
}