forked from projectralph/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombinationSum.js
65 lines (57 loc) · 2.05 KB
/
combinationSum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* @param {number[]} candidates - candidate numbers we're picking from.
* @param {number} remainingSum - remaining sum after adding candidates to currentCombination.
* @param {number[][]} finalCombinations - resulting list of combinations.
* @param {number[]} currentCombination - currently explored candidates.
* @param {number} startFrom - index of the candidate to start further exploration from.
* @return {number[][]}
*/
function combinationSumRecursive(
candidates,
remainingSum,
finalCombinations = [],
currentCombination = [],
startFrom = 0,
) {
if (remainingSum < 0) {
// By adding another candidate we've gone below zero.
// This would mean that the last candidate was not acceptable.
return finalCombinations;
}
if (remainingSum === 0) {
// If after adding the previous candidate our remaining sum
// became zero - we need to save the current combination since it is one
// of the answers we're looking for.
finalCombinations.push(currentCombination.slice());
return finalCombinations;
}
// If we haven't reached zero yet let's continue to add all
// possible candidates that are left.
for (let candidateIndex = startFrom; candidateIndex < candidates.length; candidateIndex += 1) {
const currentCandidate = candidates[candidateIndex];
// Let's try to add another candidate.
currentCombination.push(currentCandidate);
// Explore further option with current candidate being added.
combinationSumRecursive(
candidates,
remainingSum - currentCandidate,
finalCombinations,
currentCombination,
candidateIndex,
);
// BACKTRACKING.
// Let's get back, exclude current candidate and try another ones later.
currentCombination.pop();
}
return finalCombinations;
}
/**
* Backtracking algorithm of finding all possible combination for specific sum.
*
* @param {number[]} candidates
* @param {number} target
* @return {number[][]}
*/
export default function combinationSum(candidates, target) {
return combinationSumRecursive(candidates, target);
}