-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathGannetFitPhantom.m
934 lines (750 loc) · 46.3 KB
/
GannetFitPhantom.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
function MRS_struct = GannetFitPhantom(MRS_struct, varargin)
% GannetFitPhantom
% Updates by MM 2018-2023
if nargin == 0
fprintf('\n');
error('MATLAB:minrhs', 'Not enough input arguments.');
end
MRS_struct.version.fit_phantom = '230729';
if MRS_struct.p.PRIAM
vox = MRS_struct.p.vox;
else
vox = MRS_struct.p.vox(1);
end
if nargin < 2
target = MRS_struct.p.target;
elseif nargin > 1
% varargin = Optional arguments if user wants to specify a target
% metabolite, overwriting the parameter set in GannetPreInitialise.m
switch varargin{1}
case 'GABA'
MRS_struct.p.target = 'GABA';
case 'Glx'
MRS_struct.p.target = 'Glx';
case 'GSH'
MRS_struct.p.target = 'GSH';
case 'Lac'
MRS_struct.p.target = 'Lac';
case 'EtOH'
MRS_struct.p.target = 'EtOH';
end
target = {MRS_struct.p.target};
end
freq = MRS_struct.spec.freq;
lsqopts = optimset('lsqcurvefit');
lsqopts = optimset(lsqopts,'MaxIter',800,'TolX',1e-4,'TolFun',1e-4,'Display','off');
nlinopts = statset('nlinfit');
nlinopts = statset(nlinopts,'MaxIter',400,'TolX',1e-6,'TolFun',1e-6,'FunValCheck','off');
warning('off','stats:nlinfit:ModelConstantWRTParam');
warning('off','stats:nlinfit:IllConditionedJacobian');
warning('off','stats:nlinfit:IterationLimitExceeded');
warning('off','MATLAB:rankDeficientMatrix');
% Loop over voxels if PRIAM
for kk = 1:length(vox)
if strcmp(MRS_struct.p.reference,'H2O')
WaterData = MRS_struct.spec.(vox{kk}).water;
end
run_count = 0;
% Loop over edited spectra if HERMES
for jj = 1:length(target)
if jj == 1
fprintf('\nFitting %s...\n',target{jj});
else
fprintf('Fitting %s...\n',target{jj});
end
DIFF = MRS_struct.spec.(vox{kk}).(target{jj}).diff;
numscans = size(DIFF,1);
for ii = 1:numscans
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. Metabolite Fitting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch target{jj}
case 'GABA'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GABA Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqbounds = find(freq <= 3.3 & freq >= 2.7);
plotbounds = find(freq <= 3.4 & freq >= 2.6);
maxinGABA = max(real(DIFF(ii,freqbounds)));
grad_points = (real(DIFF(ii,freqbounds(end))) - real(DIFF(ii,freqbounds(1)))) ./ abs(freqbounds(end) - freqbounds(1));
LinearInit = grad_points ./ abs(freq(1) - freq(2));
T2 = 60;
omega0 = 3.01;
J = 7.5/MRS_struct.p.LarmorFreq(ii);
ThreeLorentzModelInit = [maxinGABA/T2 maxinGABA/T2 maxinGABA/T2/3 ...
T2 omega0 J 0 0 0 -LinearInit 0];
lb = [-4000*maxinGABA/T2 -4000*maxinGABA/T2 -4000*maxinGABA/T2/3 ...
0 omega0-J J-0.01 -pi -pi -pi -40*maxinGABA -2000*maxinGABA];
ub = [4000*maxinGABA/T2 4000*maxinGABA/T2 4000*maxinGABA/T2/3 ...
T2*100 omega0+J J+0.01 pi pi pi 40*maxinGABA 1000*maxinGABA];
% Least-squares model fitting
ThreeLorentzModelInit = lsqcurvefit(@ThreeLorentzModel, ThreeLorentzModelInit, freq(freqbounds), real(DIFF(ii,freqbounds)), lb, ub, lsqopts);
[ThreeLorentzModelParam, resid] = nlinfit(freq(freqbounds), real(DIFF(ii,freqbounds)), @ThreeLorentzModel, ThreeLorentzModelInit, nlinopts);
GABAheight = max(ThreeLorentzModelParam(1:3)) * ThreeLorentzModelParam(4);
MRS_struct.out.(vox{kk}).GABA.FitError(ii) = 100*std(resid)/GABAheight;
MRS_struct.out.(vox{kk}).GABA.Area(ii) = sum(ThreeLorentzModel(ThreeLorentzModelParam,freq(freqbounds))) * abs(freq(1) - freq(2));
MRS_struct.out.(vox{kk}).GABA.FWHM(ii) = 1./(pi*ThreeLorentzModelParam(4))*1e3;
MRS_struct.out.(vox{kk}).GABA.ModelParam(ii,:) = ThreeLorentzModelParam;
MRS_struct.out.(vox{kk}).GABA.Resid(ii,:) = resid;
% Calculate SNR of GABA signal
noiseSigma_DIFF = CalcNoise(freq, DIFF(ii,:));
MRS_struct.out.(vox{kk}).GABA.SNR(ii) = abs(GABAheight)/noiseSigma_DIFF;
case 'Glx'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Glx Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqbounds = find(freq <= 4.05 & freq >= 3.45);
plotbounds = find(freq <= 4.15 & freq >= 3.35);
maxinGlx = max(real(DIFF(ii,freqbounds)));
grad_points = (real(DIFF(ii,freqbounds(end))) - real(DIFF(ii,freqbounds(1)))) ./ abs(freqbounds(end) - freqbounds(1));
LinearInit = grad_points ./ abs(freq(1) - freq(2));
T2 = 60;
omega0 = 3.74;
J = 5.8/MRS_struct.p.LarmorFreq(ii);
TwoLorentzModelInit = [maxinGlx/T2 maxinGlx/T2 ...
T2 omega0 J 0 0 -LinearInit 0];
lb = [-4000*maxinGlx/T2 -4000*maxinGlx/T2 ...
0 omega0-J J-0.01 -pi -pi -40*maxinGlx -2000*maxinGlx];
ub = [4000*maxinGlx/T2 4000*maxinGlx/T2 ...
T2*100 omega0+J J+0.01 pi pi 40*maxinGlx 1000*maxinGlx];
% Least-squares model fitting
TwoLorentzModelInit = lsqcurvefit(@TwoLorentzModel, TwoLorentzModelInit, freq(freqbounds), real(DIFF(ii,freqbounds)), lb, ub, lsqopts);
[TwoLorentzModelParam, resid] = nlinfit(freq(freqbounds), real(DIFF(ii,freqbounds)), @TwoLorentzModel, TwoLorentzModelInit, nlinopts);
Glxheight = max(TwoLorentzModelParam(1:2)) * TwoLorentzModelParam(3);
MRS_struct.out.(vox{kk}).Glx.FitError(ii) = 100*std(resid)/Glxheight;
MRS_struct.out.(vox{kk}).Glx.Area(ii) = sum(TwoLorentzModel(TwoLorentzModelParam,freq(freqbounds))) * abs(freq(1) - freq(2));
MRS_struct.out.(vox{kk}).Glx.FWHM(ii) = 1./(pi*TwoLorentzModelParam(3))*1e3;
MRS_struct.out.(vox{kk}).Glx.ModelParam(ii,:) = TwoLorentzModelParam;
MRS_struct.out.(vox{kk}).Glx.Resid(ii,:) = resid;
% Calculate SNR of Glx signal
noiseSigma_DIFF = CalcNoise(freq, DIFF(ii,:));
MRS_struct.out.(vox{kk}).Glx.SNR(ii) = abs(Glxheight)/noiseSigma_DIFF;
case 'GSH'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GSH Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqbounds = find(freq <= 3.2 & freq >= 2.7);
plotbounds = find(freq <= 3.4 & freq >= 2.5);
maxinGSH = max(real(DIFF(ii,freqbounds)));
grad_points = (real(DIFF(ii,freqbounds(end))) - real(DIFF(ii,freqbounds(1)))) ./ abs(freqbounds(end) - freqbounds(1));
LinearInit = grad_points ./ abs(freq(1) - freq(2));
T2 = 60;
omega0 = 2.95;
J = 4/MRS_struct.p.LarmorFreq(ii);
SixLorentzModelInit = [-maxinGSH/T2/10 -maxinGSH/T2/10 ...
maxinGSH/T2 maxinGSH/T2 ...
-maxinGSH/T2/10 -maxinGSH/T2/10 ...
T2 omega0 J ...
180 180 0 0 180 180 ...
-LinearInit 0];
lb = [-4000*maxinGSH/T2/10 -4000*maxinGSH/T2/10 ...
-4000*maxinGSH/T2 -4000*maxinGSH/T2 ...
-4000*maxinGSH/T2/10 -4000*maxinGSH/T2/10 ...
0 omega0-J J-0.01 ...
-pi -pi -pi -pi -pi -pi ...
-40*maxinGSH -2000*maxinGSH];
ub = [4000*maxinGSH/T2/10 4000*maxinGSH/T2/10 ...
4000*maxinGSH/T2 4000*maxinGSH/T2 ...
4000*maxinGSH/T2/10 4000*maxinGSH/T2/10 ...
T2*100 omega0+J J+0.01 ...
pi pi pi pi pi pi ...
40*maxinGSH 2000*maxinGSH];
% Least-squares model fitting
SixLorentzModelInit = lsqcurvefit(@SixLorentzModel, SixLorentzModelInit, freq(freqbounds), real(DIFF(ii,freqbounds)), lb, ub, lsqopts);
[SixLorentzModelParam, resid] = nlinfit(freq(freqbounds), real(DIFF(ii,freqbounds)), @SixLorentzModel, SixLorentzModelInit, nlinopts);
GSHheight = max(SixLorentzModelParam(3:4)) * SixLorentzModelParam(7);
MRS_struct.out.(vox{kk}).GSH.FitError(ii) = 100*std(resid)/GSHheight;
MRS_struct.out.(vox{kk}).GSH.Area(ii) = sum(SixLorentzModel(SixLorentzModelParam,freq(freqbounds))) * abs(freq(1) - freq(2));
MRS_struct.out.(vox{kk}).GSH.FWHM(ii) = 1./(pi*SixLorentzModelParam(7))*1e3;
MRS_struct.out.(vox{kk}).GSH.ModelParam(ii,:) = SixLorentzModelParam;
MRS_struct.out.(vox{kk}).GSH.Resid(ii,:) = resid;
% Calculate SNR of GABA signal
noiseSigma_DIFF = CalcNoise(freq, DIFF(ii,:));
MRS_struct.out.(vox{kk}).GSH.SNR(ii) = abs(GSHheight)/noiseSigma_DIFF;
case 'Lac'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lac Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqbounds = find(freq <= 1.7 & freq >= 0.76);
plotbounds = find(freq <= 2 & freq >= 0.53);
maxinLac = max(real(DIFF(ii,freqbounds)));
grad_points = (real(DIFF(ii,freqbounds(end))) - real(DIFF(ii,freqbounds(1)))) ./ abs(freqbounds(end) - freqbounds(1));
LinearInit = grad_points ./ abs(freq(1) - freq(2));
T2 = 60;
omega0 = 1.31;
J = 3.5/MRS_struct.p.LarmorFreq(ii);
TwoLorentzModelInit = [maxinLac/T2 maxinLac/T2 ...
T2 omega0 J 0 0 -LinearInit 0];
lb = [-4000*maxinLac/T2 -4000*maxinLac/T2 ...
0 omega0-J J-0.01 -pi -pi -40*maxinLac -2000*maxinLac];
ub = [4000*maxinLac/T2 4000*maxinLac/T2 ...
T2*100 omega0+J J+0.01 pi pi 40*maxinLac 1000*maxinLac];
% Least-squares model fitting
TwoLorentzModelInit = lsqcurvefit(@TwoLorentzModel, TwoLorentzModelInit, freq(freqbounds), real(DIFF(ii,freqbounds)), lb, ub, lsqopts);
[TwoLorentzModelParam, resid] = nlinfit(freq(freqbounds), real(DIFF(ii,freqbounds)), @TwoLorentzModel, TwoLorentzModelInit, nlinopts);
Lacheight = max(TwoLorentzModelParam(1:2)) * TwoLorentzModelParam(3);
MRS_struct.out.(vox{kk}).Lac.FitError(ii) = 100*std(resid)/Lacheight;
MRS_struct.out.(vox{kk}).Lac.Area(ii) = sum(TwoLorentzModel(TwoLorentzModelParam,freq(freqbounds))) * abs(freq(1) - freq(2));
MRS_struct.out.(vox{kk}).Lac.FWHM(ii) = 1./(pi*TwoLorentzModelParam(3))*1e3;
MRS_struct.out.(vox{kk}).Lac.ModelParam(ii,:) = TwoLorentzModelParam;
MRS_struct.out.(vox{kk}).Lac.Resid(ii,:) = resid;
% Calculate SNR of Lac signal
noiseSigma_DIFF = CalcNoise(freq, DIFF(ii,:));
MRS_struct.out.(vox{kk}).Lac.SNR(ii) = abs(Lacheight)/noiseSigma_DIFF;
case 'EtOH'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EtOH Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqbounds = find(freq <= 1.4 & freq >= 0.9);
plotbounds = find(freq <= 1.6 & freq >= 0.7);
maxinEtOH = max(real(DIFF(ii,freqbounds)));
grad_points = (real(DIFF(ii,freqbounds(end))) - real(DIFF(ii,freqbounds(1)))) ./ abs(freqbounds(end) - freqbounds(1));
LinearInit = grad_points ./ abs(freq(1) - freq(2));
T2 = 70;
omega0 = 1.18;
J = 7.5/MRS_struct.p.LarmorFreq(ii);
ThreeLorentzModelInit = [maxinEtOH/T2 maxinEtOH/T2 maxinEtOH/T2/3 ...
T2 omega0 J 0 0 0 -LinearInit 0];
lb = [-4000*maxinEtOH/T2 -4000*maxinEtOH/T2 -4000*maxinEtOH/T2/3 ...
0 omega0-J J-0.01 -pi -pi -pi -40*maxinEtOH -2000*maxinEtOH];
ub = [4000*maxinEtOH/T2 4000*maxinEtOH/T2 4000*maxinEtOH/T2/3 ...
T2*100 omega0+J J+0.01 pi pi pi 40*maxinEtOH 1000*maxinEtOH];
% Least-squares model fitting
ThreeLorentzModelInit = lsqcurvefit(@ThreeLorentzModel, ThreeLorentzModelInit, freq(freqbounds), real(DIFF(ii,freqbounds)), lb, ub, lsqopts);
[ThreeLorentzModelParam, resid] = nlinfit(freq(freqbounds), real(DIFF(ii,freqbounds)), @ThreeLorentzModel, ThreeLorentzModelInit, nlinopts);
EtOHheight = max(ThreeLorentzModelParam(1:3)) * ThreeLorentzModelParam(4);
MRS_struct.out.(vox{kk}).EtOH.FitError(ii) = 100*std(resid)/EtOHheight;
MRS_struct.out.(vox{kk}).EtOH.Area(ii) = sum(ThreeLorentzModel(ThreeLorentzModelParam,freq(freqbounds))) * abs(freq(1) - freq(2));
MRS_struct.out.(vox{kk}).EtOH.FWHM(ii) = 1./(pi*ThreeLorentzModelParam(4))*1e3;
MRS_struct.out.(vox{kk}).EtOH.ModelParam(ii,:) = ThreeLorentzModelParam;
MRS_struct.out.(vox{kk}).EtOH.Resid(ii,:) = resid;
% Calculate SNR of EtOH signal
noiseSigma_DIFF = CalcNoise(freq, DIFF(ii,:));
MRS_struct.out.(vox{kk}).EtOH.SNR(ii) = abs(EtOHheight)/noiseSigma_DIFF;
otherwise
error('Metabolite ''%s'' not recognized.', target{jj});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1a. Initialize the output figure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ishandle(102)
clf(102);
end
if MRS_struct.p.hide
h = figure('Visible', 'off');
else
h = figure(102);
end
% Open figure in center of screen
scr_sz = get(0,'ScreenSize');
fig_w = 1000;
fig_h = 707;
set(h,'Position',[(scr_sz(3)-fig_w)/2, (scr_sz(4)-fig_h)/2, fig_w, fig_h]);
set(h,'Color',[1 1 1]);
figTitle = 'GannetFitPhantom Output';
set(h,'Name',figTitle,'Tag',figTitle,'NumberTitle','off');
% Spectra plot
subplot(2,2,1);
metabmin = min(real(DIFF(ii,plotbounds)));
metabmax = max(real(DIFF(ii,plotbounds)));
resmax = max(resid);
resid = resid + metabmin - resmax;
switch target{jj}
case 'GABA'
plot(freq(plotbounds), real(DIFF(ii,plotbounds)), 'b', ...
freq(freqbounds), ThreeLorentzModel(ThreeLorentzModelParam,freq(freqbounds)), 'r', ...
freq(freqbounds), resid, 'k');
set(gca,'XLim',[2.6 3.4]);
case 'Glx'
plot(freq(plotbounds), real(DIFF(ii,plotbounds)), 'b', ...
freq(freqbounds), TwoLorentzModel(TwoLorentzModelParam,freq(freqbounds)), 'r', ...
freq(freqbounds), resid, 'k');
set(gca,'XLim',[3.35 4.15]);
case 'GSH'
plot(freq(plotbounds), real(DIFF(ii,plotbounds)), 'b' ,...
freq(freqbounds), SixLorentzModel(SixLorentzModelParam,freq(freqbounds)), 'r', ...
freq(freqbounds),resid, 'k');
set(gca,'XLim',[2.5 3.4]);
case 'Lac'
plot(freq(plotbounds), real(DIFF(ii,plotbounds)), 'b', ...
freq(freqbounds), TwoLorentzModel(TwoLorentzModelParam,freq(freqbounds)), 'r', ...
freq(freqbounds), resid, 'k');
set(gca,'XLim',[0.53 2]);
case 'EtOH'
plot(freq(plotbounds), real(DIFF(ii,plotbounds)), 'b', ...
freq(freqbounds), ThreeLorentzModel(ThreeLorentzModelParam,freq(freqbounds)), 'r', ...
freq(freqbounds), resid, 'k');
set(gca,'XLim',[0.7 1.6]);
end
% From here on is cosmetic - adding labels etc.
switch target{jj}
case 'GABA'
text(3.2, metabmax/3, 'GABA', 'HorizontalAlignment', 'center');
labelbounds = freq <= 2.8 & freq >= 2.6;
tailtop = max(real(DIFF(ii,labelbounds)));
tailbottom = min(real(DIFF(ii,labelbounds)));
text(2.775, min(resid), 'residual', 'HorizontalAlignment', 'left');
text(2.775, tailtop+metabmax/20, 'data', 'Color', [0 0 1]);
text(2.775, tailbottom-metabmax/20, 'model', 'Color', [1 0 0]);
set(gca,'XLim',[2.6 3.4]);
case 'GSH'
text(3.05, maxinGSH/2, 'GSH', 'HorizontalAlignment', 'center');
labelbounds = freq <= 2.8 & freq >= 2.5;
tailtop = max(real(DIFF(ii,labelbounds)));
tailbottom = min(real(DIFF(ii,labelbounds)));
text(2.7, min(resid), 'residual', 'HorizontalAlignment', 'left');
text(2.7, tailtop+metabmax/20, 'data', 'Color', [0 0 1]);
text(2.7, tailbottom-20*metabmax/20, 'model', 'Color', [1 0 0]);
set(gca,'XLim',[2.5 3.4]);
case 'Lac'
text(1.45, metabmax/3, 'Lac', 'HorizontalAlignment', 'center');
labelbounds = freq <= 0.9 & freq >= 0.8;
tailtop = max(real(DIFF(ii,labelbounds)));
tailbottom = min(real(DIFF(ii,labelbounds)));
text(0.9, min(resid), 'residual', 'HorizontalAlignment', 'left');
text(0.8, tailtop+metabmax/20, 'data', 'Color', [0 0 1]);
text(0.8, tailbottom-metabmax/20, 'model', 'Color', [1 0 0]);
set(gca,'XLim',[0.4 2]);
case 'Glx'
text(3.72, metabmax/5, 'Glx', 'HorizontalAlignment', 'center');
labelbounds = freq <= 3.6 & freq >= 3.4;
tailtop = max(real(DIFF(ii,labelbounds)));
tailbottom = min(real(DIFF(ii,labelbounds)));
text(3.5, min(resid), 'residual', 'HorizontalAlignment', 'left');
text(3.5, tailtop+metabmax/20, 'data', 'Color', [0 0 1]);
text(3.5, tailbottom-metabmax/20, 'model', 'Color', [1 0 0]);
set(gca,'XLim',[3.4 4.2]);
case 'EtOH'
text(1.35, metabmax/3, 'EtOH', 'HorizontalAlignment', 'center');
labelbounds = freq <= 1.0 & freq >= 0.7;
tailtop = max(real(DIFF(ii,labelbounds)));
tailbottom = min(real(DIFF(ii,labelbounds)));
text(0.9, min(resid), 'residual', 'HorizontalAlignment', 'left');
text(0.9, tailtop+metabmax/20, 'data', 'Color', [0 0 1]);
text(0.9, tailbottom-metabmax/20, 'model', 'Color', [1 0 0]);
set(gca,'XLim',[0.4 1.9]);
end
title('Difference spectrum and model fit');
xlabel('ppm');
set(gca,'XDir','reverse','TickDir','out','Box','off');
set(get(gca,'YAxis'),'Visible','off');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2. Water Fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(MRS_struct.p.reference,'H2O')
% Estimate height and baseline from data
[maxinWater, watermaxindex] = max(real(WaterData(ii,:)),[],2);
waterbase = mean(real(WaterData(ii,freq <= 4 & freq >= 3.8)));
LGPModelInit = [maxinWater 20 freq(watermaxindex) 0 waterbase -50 0];
lb = [0.01*maxinWater 1 4.6 0 0 -50 -pi];
ub = [40*maxinWater 100 5.0 0.000001 1 0 pi];
freqbounds = freq <= 5.1 & freq >= 4.5;
plotbounds = freq <= 5.2 & freq >= 4.4;
% Least-squares model fitting
LGPModelInit = lsqcurvefit(@LorentzGaussModelP, LGPModelInit, freq(freqbounds), real(WaterData(ii,freqbounds)), lb, ub, lsqopts);
[LGPModelParam, residw] = nlinfit(freq(freqbounds), real(WaterData(ii,freqbounds)), @LorentzGaussModelP, LGPModelInit, nlinopts);
WaterArea = sum(real(LorentzGaussModel(LGPModelParam(1:end-1),freq(freqbounds))) - BaselineModel(LGPModelParam(3:5),freq(freqbounds)),2);
MRS_struct.out.(vox{kk}).water.Area(ii) = WaterArea * abs(freq(1)-freq(2));
waterheight = LGPModelParam(1);
MRS_struct.out.(vox{kk}).water.FitError(ii) = 100*std(residw)/waterheight;
LG = real(LorentzGaussModel(LGPModelParam(1:end-1),freq(freqbounds))) - BaselineModel(LGPModelParam(3:5),freq(freqbounds));
LG = LG./max(LG);
ind = find(LG >= 0.5);
f = freq(freqbounds);
w = abs(f(ind(1)) - f(ind(end)));
MRS_struct.out.(vox{kk}).water.FWHM(ii) = w * MRS_struct.p.LarmorFreq(ii);
MRS_struct.out.(vox{kk}).water.ModelParam(ii,:) = LGPModelParam;
MRS_struct.out.(vox{kk}).water.Resid(ii,:) = residw;
% Calculate SNR of water signal
noiseSigma_Water = CalcNoise(freq, WaterData(ii,:));
MRS_struct.out.(vox{kk}).water.SNR(ii) = abs(waterheight)/noiseSigma_Water;
% Root sum square fit error and concentration in institutional units
switch target{jj}
case 'GABA'
MRS_struct.out.(vox{kk}).GABA.FitError_W(ii) = sqrt(MRS_struct.out.(vox{kk}).GABA.FitError(ii).^2 + MRS_struct.out.(vox{kk}).water.FitError(ii).^2);
MRS_struct = CalcConc(MRS_struct, vox{kk}, 'GABA', ii);
case 'Glx'
MRS_struct.out.(vox{kk}).Glx.FitError_W(ii) = sqrt(MRS_struct.out.(vox{kk}).Glx.FitError(ii).^2 + MRS_struct.out.(vox{kk}).water.FitError(ii).^2);
MRS_struct = CalcConc(MRS_struct, vox{kk}, 'Glx', ii);
case 'GSH'
MRS_struct.out.(vox{kk}).GSH.FitError_W(ii) = sqrt(MRS_struct.out.(vox{kk}).GSH.FitError(ii).^2 + MRS_struct.out.(vox{kk}).water.FitError(ii).^2);
MRS_struct = CalcConc(MRS_struct, vox{kk}, (target{jj}), ii);
case 'Lac'
MRS_struct.out.(vox{kk}).Lac.FitError_W(ii) = sqrt(MRS_struct.out.(vox{kk}).Lac.FitError(ii).^2 + MRS_struct.out.(vox{kk}).water.FitError(ii).^2);
MRS_struct = CalcConc(MRS_struct, vox{kk}, (target{jj}), ii);
case 'EtOH'
MRS_struct.out.(vox{kk}).EtOH.FitError_W(ii) = sqrt(MRS_struct.out.(vox{kk}).EtOH.FitError(ii).^2 + MRS_struct.out.(vox{kk}).water.FitError(ii).^2);
MRS_struct = CalcConc(MRS_struct, vox{kk}, 'EtOH', ii);
end
% Generate scaled spectra (for plotting) CJE Jan2011, MM (170705)
MRS_struct.spec.(vox{kk}).(target{jj}).off_scaled(ii,:) = ...
MRS_struct.spec.(vox{kk}).(target{jj}).off(ii,:) .* (1/MRS_struct.out.(vox{kk}).water.ModelParam(ii,1));
MRS_struct.spec.(vox{kk}).(target{jj}).on_scaled(ii,:) = ...
MRS_struct.spec.(vox{kk}).(target{jj}).on(ii,:) .* (1/MRS_struct.out.(vox{kk}).water.ModelParam(ii,1));
MRS_struct.spec.(vox{kk}).(target{jj}).diff_scaled(ii,:) = ...
MRS_struct.spec.(vox{kk}).(target{jj}).diff(ii,:) .* (1/MRS_struct.out.(vox{kk}).water.ModelParam(ii,1));
% Reorder structure fields
MRS_struct.out.(vox{kk}).water = orderfields(MRS_struct.out.(vox{kk}).water, {'Area', 'FWHM', 'SNR', 'ModelParam', 'Resid', 'FitError'});
subplot(2,2,3);
watmin = min(real(WaterData(ii,:)));
watmax = max(real(WaterData(ii,:)));
resmax = max(residw);
residw = residw + watmin - resmax;
plot(freq(plotbounds), real(WaterData(ii,plotbounds)), 'b', ...
freq(freqbounds), real(LorentzGaussModelP(LGPModelParam,freq(freqbounds))), 'r', ...
freq(freqbounds), residw, 'k');
set(gca,'XDir','reverse','TickDir','out','Box','off','XTick',4.2:0.2:5.2);
xlim([4.4 5.2]);
set(get(gca,'YAxis'),'Visible','off');
% Add on some labels
text(4.85, watmax/2, 'Water', 'HorizontalAlignment', 'right');
labelfreq = freq(freqbounds);
rlabelbounds = labelfreq <= 4.7 & labelfreq >= 4.4;
axis_bottom = axis;
text(4.6, max(min(residw(rlabelbounds))-0.05*watmax, axis_bottom(3)), 'residual', 'HorizontalAlignment', 'left');
end
% Reorder structure fields
if ~MRS_struct.p.HERMES
if strcmp(MRS_struct.p.reference,'H2O')
MRS_struct.out.(vox{kk}).(target{jj}) = orderfields(MRS_struct.out.(vox{kk}).(target{jj}), ...
{'Area', 'FWHM', 'SNR', 'ModelParam', 'Resid', 'FitError', 'FitError_W', 'ConcIU'});
else
MRS_struct.out.(vox{kk}).(target{jj}) = orderfields(MRS_struct.out.(vox{kk}).(target{jj}), ...
{'Area', 'FWHM', 'SNR', 'ModelParam', 'Resid', 'FitError'});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5. Build GannetFit Output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(MRS_struct.p.reference,'H2O')
set(gca,'XDir','reverse','TickDir','out','Box','off');
set(get(gca,'YAxis'),'Visible','off');
xlabel('ppm');
title('Reference Signals');
end
% And running the plot
if any(strcmp('mask',fieldnames(MRS_struct)))
hc = subplot(2,2,2);
get(hc,'pos'); % get position of axes
set(hc,'pos',[0.52 0.52 0.42 0.42]) % move the axes slightly
size_max = size(MRS_struct.mask.img{ii},1);
imagesc(MRS_struct.mask.img{ii}(:,size_max+(1:size_max)));
colormap('gray');
caxis([0 1]) %#ok<CAXIS>
axis equal;
axis tight;
axis off;
subplot(2,2,4,'replace');
else
subplot(3,2,[2 4]);
axis off;
end
text_pos = 0.95; % A variable to determine y-position of text on printout on figure
shift = 0.06;
% 1. Filename
if strcmp(MRS_struct.p.vendor,'Siemens_rda')
[~,tmp,tmp2] = fileparts(MRS_struct.metabfile{1,ii*2-1});
else
[~,tmp,tmp2] = fileparts(MRS_struct.metabfile{1,ii});
end
fname = [tmp tmp2];
if length(fname) > 30
fname = [fname(1:12) '...' fname(end-11:end)];
end
text(0.4, text_pos, 'Filename: ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos, fname, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'Interpreter', 'none');
% 2a. Area
text(0.4, text_pos-shift, 'Area ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
switch target{jj}
case 'GABA'
tmp1 = 'GABA: ';
tmp2 = sprintf('%.3g', MRS_struct.out.(vox{kk}).GABA.Area(ii));
case 'Glx'
tmp1 = 'Glx: ';
tmp2 = sprintf('%.3g', MRS_struct.out.(vox{kk}).Glx.Area(ii));
case 'GSH'
tmp1 = 'GSH Area';
tmp2 = sprintf('%.3g', MRS_struct.out.(vox{kk}).GSH.Area(ii));
case 'Lac'
tmp1 = 'Lac: ';
tmp2 = sprintf('%.3g', MRS_struct.out.(vox{kk}).Lac.Area(ii));
case 'EtOH'
tmp1 = 'EtOH: ';
tmp2 = sprintf('%.3g', MRS_struct.out.(vox{kk}).EtOH.Area(ii));
end
text(0.4, text_pos-2*shift, tmp1, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-2*shift, tmp2, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
if strcmp(MRS_struct.p.reference,'H2O')
% 2b. Area (Water)
tmp1 = sprintf('%.3g', MRS_struct.out.(vox{kk}).water.Area(ii));
text(0.4, text_pos-3*shift, 'Water: ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-3*shift, tmp1, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 3. FWHM
text(0.4, text_pos-4*shift, 'FWHM ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
tmp2 = sprintf('%.1f Hz', MRS_struct.out.(vox{kk}).water.FWHM(ii));
text(0.4, text_pos-5*shift, 'Water: ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-5*shift, tmp2, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 4. Fit Error
text(0.4, text_pos-6*shift, 'Fit error ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
tmp1 = sprintf('%s,Water: ', target{jj});
if strcmp(target{jj},'GABA')
tmp2 = sprintf('%.2f%%', MRS_struct.out.(vox{kk}).GABA.FitError_W(ii));
else
tmp2 = sprintf('%.2f%%', MRS_struct.out.(vox{kk}).(target{jj}).FitError_W(ii));
end
text(0.4, text_pos-7*shift, tmp1, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-7*shift, tmp2, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 5. Quantification
text(0.4, text_pos-8*shift, 'Quantification ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
if strcmp(target{jj},{'GABA'})
tmp2 = sprintf('%.3f mM', MRS_struct.out.(vox{kk}).GABA.ConcIU(ii));
else
tmp2 = sprintf('%.3f mM', MRS_struct.out.(vox{kk}).(target{jj}).ConcIU(ii));
end
text(0.4, text_pos-9*shift, [target{jj} ': '], 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-9*shift, tmp2, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 6. FitVer
text(0.4, text_pos-10.5*shift, 'FitVer: ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-10.5*shift, MRS_struct.version.fit_phantom, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
else
% 3. FWHM
text(0.4, text_pos-3*shift, 'FWHM ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
tmp = sprintf('%.1f Hz', MRS_struct.out.(vox{kk}).(target{jj}).FWHM(ii));
text(0.4, text_pos-4*shift, [target{jj} ': '], 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-4*shift, tmp, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 4. Fit Error
text(0.4, text_pos-5*shift, 'Fit error ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
tmp = sprintf('%.1f%%', MRS_struct.out.(vox{kk}).(target{jj}).FitError(ii));
text(0.4, text_pos-6*shift, [target{jj} ': '], 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-6*shift, tmp, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
% 5. FitVer
text(0.4, text_pos-7.5*shift, 'FitVer: ', 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10, 'HorizontalAlignment', 'right');
text(0.425, text_pos-7.5*shift, MRS_struct.version.fit_phantom, 'Units', 'normalized', 'FontName', 'Arial', 'FontSize', 10);
end
% Save output as PDF
run_count = SavePDF(h, MRS_struct, ii, jj, kk, vox, mfilename, run_count);
end
end
% Reorder structure
if isfield(MRS_struct, 'mask')
if isfield(MRS_struct, 'waterfile')
structorder = {'version', 'ii', 'metabfile', 'waterfile', 'p', 'fids', 'spec', 'out', 'mask'};
else
structorder = {'version', 'ii', 'metabfile', 'p', 'fids', 'spec', 'out', 'mask'};
end
else
if isfield(MRS_struct, 'waterfile')
structorder = {'version', 'ii', 'metabfile', 'waterfile', 'p', 'fids', 'spec', 'out'};
else
structorder = {'version', 'ii', 'metabfile', 'p', 'fids', 'spec', 'out'};
end
end
MRS_struct = orderfields(MRS_struct, structorder);
if MRS_struct.p.mat % save MRS_struct as mat file
mat_name = fullfile(pwd, ['MRS_struct_' vox{kk} '.mat']);
if exist(mat_name, 'file')
fprintf('\nUpdating results in %s\n', ['MRS_struct_' vox{kk} '.mat...']);
else
fprintf('\nSaving results to %s\n', ['MRS_struct_' vox{kk} '.mat...']);
end
save(mat_name, 'MRS_struct');
end
if MRS_struct.p.csv % export MRS_struct fields into csv file
csv_name = fullfile(pwd, ['MRS_struct_' vox{kk} '.csv']);
if exist(csv_name, 'file')
fprintf('\nUpdating results in %s\n', ['MRS_struct_' vox{kk} '.csv...']);
else
fprintf('\nExporting results to %s\n', ['MRS_struct_' vox{kk} '.csv...']);
end
ExportToCSV(MRS_struct, vox{kk}, 'fit');
end
end
warning('on','stats:nlinfit:ModelConstantWRTParam');
warning('on','stats:nlinfit:IllConditionedJacobian');
warning('on','stats:nlinfit:IterationLimitExceeded');
warning('on','MATLAB:rankDeficientMatrix');
% Need to close hidden figures to show figures after Gannet is done running
if MRS_struct.p.hide && exist('figTitle','var')
close(figTitle);
end
%%%%%%%%%%%%%%%% THREE LORENTZ MODEL %%%%%%%%%%%%%%%%
function F = ThreeLorentzModel(x,freq)
% ThreeLorentzModel with phase parameters
% Based on Marshall & Roe, 1978 (Analytical Chem)
Ha = x(1); % amplitude of outer peak
Hb = x(2); % amplitude of outer peak
H0 = x(3); % amplitude of middle peak
T2 = x(4); % T2 relaxation time constant
f0 = x(5); % frequency of middle peak (in ppm)
J = x(6); % J-coupling constant (in ppm)
phi_a = x(7); % phase of outer peak (in rad)
phi_b = x(8); % phase of outer peak
phi_0 = x(9); % phase of middle peak
M = x(10); % baseline slope
C = x(11); % baseline offset
Aa = cos(phi_a) .* ((Ha .* T2) ./ (1 + (f0 + J - freq).^2 .* T2.^2)) ...
- sin(phi_a) .* ((Ha .* (f0 + J - freq) .* T2.^2) ./ (1 + (f0 + J - freq).^2 .* T2.^2));
Ab = cos(phi_b) .* ((Hb .* T2) ./ (1 + (f0 - J - freq).^2 .* T2.^2)) ...
- sin(phi_b) .* ((Hb .* (f0 - J - freq) .* T2.^2) ./ (1 + (f0 - J - freq).^2 .* T2.^2));
A0 = cos(phi_0) .* ((H0 .* T2) ./ (1 + (f0 - freq).^2 .* T2.^2)) ...
- sin(phi_0) .* ((H0 .* (f0 - freq) .* T2.^2) ./ (1 + (f0 - freq).^2 .* T2.^2));
F = Aa + A0 + Ab + M .* (f0 - freq) + C;
%%%%%%%%%%%%%%%% TWO LORENTZ MODEL %%%%%%%%%%%%%%%%
function F = TwoLorentzModel(x,freq)
% TwoLorentzModel with phase parameters
% Based on Marshall & Roe, 1978 (Analytical Chem)
Ha = x(1); % amplitude of peak 1
Hb = x(2); % amplitude of peak 2
T2 = x(3); % T2 relaxation time constant
f0 = x(4); % frequency (in ppm)
J = x(5); % J-coupling constant (in ppm)
phi_a = x(6); % phase of peak 1 (in rad)
phi_b = x(7); % phase of peak 2
M = x(8); % baseline slope
C = x(9); % baseline offset
Aa = cos(phi_a) .* ((Ha .* T2) ./ (1 + (f0 + J - freq).^2 .* T2.^2)) ...
- sin(phi_a) .* ((Ha .* (f0 + J - freq) .* T2.^2) ./ (1 + (f0 + J - freq).^2 .* T2.^2));
Ab = cos(phi_b) .* ((Hb .* T2) ./ (1 + (f0 - J - freq).^2 .* T2.^2)) ...
- sin(phi_b) .* ((Hb .* (f0 - J - freq) .* T2.^2) ./ ( 1 + (f0 - J - freq).^2 .* T2.^2));
F = Aa + Ab + M .* (f0 - freq) + C;
%%%%%%%%%%%%%%%% SIX LORENTZ MODEL %%%%%%%%%%%%%%%%
function F = SixLorentzModel(x,freq)
% SixLorentzModel with phase parameters
% Based on Marshall & Roe, 1978 (Analytical Chem)
Ha = x(1); % amplitude of peak 1
Hb = x(2); % amplitude of peak 2
Hc = x(3); % amplitude of peak 3
Hd = x(4); % amplitude of peak 4
He = x(5); % amplitude of peak 5
Hf = x(6); % amplitude of peak 6
T2 = x(7); % T2 relaxation time constant
f0 = x(8); % frequency (in ppm)
J = x(9); % J-coupling constant (in ppm)
phi_a = x(10); % phase of peak 1 (in rad)
phi_b = x(11); % phase of peak 2
phi_c = x(12); % phase of peak 3
phi_d = x(13); % phase of peak 4
phi_e = x(14); % phase of peak 5
phi_f = x(15); % phase of peak 6
M = x(16); % baseline slope
C = x(17); % baseline offset
Aa = cos(phi_a) .* ((Ha .* T2) ./ (1 + (f0 + 3*J - freq).^2 .* T2.^2)) ...
- sin(phi_a) .* ((Ha .* (f0 + 3*J - freq) .* T2.^2) ./ (1 + (f0 + 3*J - freq).^2 .* T2.^2));
Ab = cos(phi_b) .* ((Hb .* T2) ./ (1 + (f0 + 2*J - freq).^2 .* T2.^2)) ...
- sin(phi_b) .* ((Hb .* (f0 + 2*J - freq) .* T2.^2) ./ ( 1 + (f0 + 2*J - freq).^2 .* T2.^2));
Ac = cos(phi_c) .* ((Hc .* T2) ./ (1 + (f0 + J - freq).^2 .* T2.^2)) ...
- sin(phi_c) .* ((Hc .* (f0 + J - freq) .* T2.^2) ./ (1 + (f0 + J - freq).^2 .* T2.^2));
Ad = cos(phi_d) .* ((Hd .* T2) ./ (1 + (f0 - J - freq).^2 .* T2.^2)) ...
- sin(phi_d) .* ((Hd .* (f0 - J - freq) .* T2.^2) ./ ( 1 + (f0 - J - freq).^2 .* T2.^2));
Ae = cos(phi_e) .* ((He .* T2) ./ (1 + (f0 - 2*J - freq).^2 .* T2.^2)) ...
- sin(phi_e) .* ((He .* (f0 - 2*J - freq) .* T2.^2) ./ (1 + (f0 - 2*J - freq).^2 .* T2.^2));
Af = cos(phi_f) .* ((Hf .* T2) ./ (1 + (f0 - 3*J - freq).^2 .* T2.^2)) ...
- sin(phi_f) .* ((Hf .* (f0 - 3*J - freq) .* T2.^2) ./ ( 1 + (f0 - 3*J - freq).^2 .* T2.^2));
F = Aa + Ab + Ac + Ad + Ae + Af + M .* (f0 - freq) + C;
%%%%%%%%%%%%%%%% LORENTZGAUSSMODEL %%%%%%%%%%%%%%%%
function F = LorentzGaussModel(x,freq)
% Function for LorentzGaussModel Model
% CJE 24Nov10 - removed phase term from fit - this is now dealt with
% by the phasing of the water ref scans in MRSLoadPfiles
%Lorentzian Model multiplied by a Gaussian.
% x(1) = Amplitude of (scaled) Lorentzian
% x(2) = 1 / hwhm of Lorentzian (hwhm = half width at half max)
% x(3) = centre freq of Lorentzian
% x(4) = linear baseline slope
% x(5) = constant baseline amplitude
% x(6) = -1 / 2 * sigma^2 of gaussian
% Lorentzian = (1/pi) * (hwhm) / (deltaf^2 + hwhm^2)
% Peak height of Lorentzian = 4 / (pi*hwhm)
% F is a normalised Lorentzian - height independent of hwhm
% = Lorentzian / Peak
F = (x(1)*ones(size(freq))./(x(2)^2*(freq-x(3)).*(freq-x(3))+1)) ... % Lorentzian
.* (exp(x(6)*(freq-x(3)).*(freq-x(3)))) ... % Gaussian
+ x(4)*(freq-x(3)) ... % linear baseline
+ x(5); % constant baseline
%%%%%%%%%%%%%%%% LORENTZGAUSSMODEL WITH PHASE %%%%%%%%%%%%%%%%
function F = LorentzGaussModelP(x,freq)
% Function for LorentzGaussModel Model with Phase
% Lorentzian Model multiplied by a Gaussian
% x(1) = Amplitude of (scaled) Lorentzian
% x(2) = 1 / hwhm of Lorentzian (hwhm = half width at half max)
% x(3) = centre freq of Lorentzian
% x(4) = linear baseline slope
% x(5) = constant baseline amplitude
% x(6) = -1 / 2 * sigma^2 of gaussian
% x(7) = phase (in rad)
% Lorentzian = (1/pi) * (hwhm) / (deltaf^2 + hwhm^2)
% Peak height of Lorentzian = 4 / (pi*hwhm)
% F is a normalised Lorentzian - height independent of hwhm
% = Lorentzian / Peak
F = ((cos(x(7))*x(1)*ones(size(freq)) + sin(x(7))*x(1)*x(2)*(freq-x(3)))./(x(2)^2*(freq-x(3)).*(freq-x(3))+1)) ... % Lorentzian
.* (exp(x(6)*(freq-x(3)).*(freq-x(3)))) ... % Gaussian
+ x(4)*(freq-x(3)) ... % linear baseline
+ x(5); % constant baseline
%%%%%%%%%%%%%%% BASELINE %%%%%%%%%%%%%%%
function F = BaselineModel(x,freq)
% Function for Baseline Model
F = x(2)*(freq-x(1))+x(3);
%%%%%%%%%%%%%%%% CALCULATE CONCENTRATION %%%%%%%%%%%%%%%%
function MRS_struct = CalcConc(MRS_struct, vox, metab, ii)
% Function for quantifying concentration in absolute units (mM)
TR = MRS_struct.p.TR(ii)/1e3;
TE = MRS_struct.p.TE(ii)/1e3;
if isfield(MRS_struct.p,'TR_water')
TR_water = MRS_struct.p.TR_water(ii)/1e3;
else
TR_water = TR;
end
if isfield(MRS_struct.p,'TE_water')
TE_water = MRS_struct.p.TE_water(ii)/1e3;
else
TE_water = TE;
end
PureWaterConc = 55.51*1e3; % mol/kg
T1_Water = 2928/1e3; % from unpublished JHU data (K. Chan)
T2_Water = 0.503; % NB: T2 of water in CSF in vivo; Piechnik et al. 2009 (MRM)
N_H_Water = 2;
switch metab
case 'GABA'
EditingEfficiency = 0.5; % for TE = 68 ms
T1_Metab = 1.84; % Harris et al. 2017 (MRI)
T2_Metab = 248/1e3; % Harris et al. 2017 (MRI)
N_H_Metab = 2;
case 'Glx'
EditingEfficiency = 0.4; % determined by FID-A simulations (for TE = 68 ms)
T1_Metab = 1.18; % Choi et al. 2006 (MRM)
T2_Metab = 640/1e3; % Choi et al. 2006 (MRM)
N_H_Metab = 1;
case 'GSH'
EditingEfficiency = 0.74; % At 3T based on Quantification of Glutathione in the Human Brain by MR Spectroscopy at 3 Tesla:
% Comparison of PRESS and MEGA-PRESS
% Faezeh Sanaei Nezhad etal. DOI 10.1002/mrm.26532, 2016
T1_Metab = 0.40; % At 3T based on Doubly selective multiple quantum chemical shift imaging and
% T1 relaxation time measurement of glutathione (GSH) in the human brain in vivo
% In-Young Choi et al. NMR Biomed. 2013; 26: 28-34
T2_Metab = 0.12; % At 3T based on the ISMRM abstract
% T2 relaxation times of 18 brain metabolites determined in 83 healthy volunteers in vivo
% Milan Scheidegger et al. Proc. Intl. Soc. Mag. Reson. Med. 22 (2014)
N_H_Metab = 2;
case 'Lac'
EditingEfficiency = 0.94; % determined by FID-A simulations (for TE = 140 ms)
T1_Metab = 1.50; % Wijnen et al. 2015 (NMR Biomed)
T2_Metab = 0.24; % Madan et al. 2015 (MRM) (NB: this was estimated in brain tumors)
N_H_Metab = 3;
case 'EtOH'
EditingEfficiency = 0.5; % assuming same as GABA for now
T1_Metab = 1.84; % assuming same as GABA
T2_Metab = 248/1e3; % assuming same as GABA
N_H_Metab = 3;
end
T1_Factor = (1 - exp(-TR_water./T1_Water)) ./ (1 - exp(-TR./T1_Metab));
T2_Factor = exp(-TE_water./T2_Water) ./ exp(-TE./T2_Metab);
if strcmpi(MRS_struct.p.vendor,'Siemens_rda')
% Factor of 2 is appropriate for averaged Siemens data (read in separately as ON and OFF)
MRS_struct.out.(vox).(metab).ConcIU(ii) = (MRS_struct.out.(vox).(metab).Area(ii) ./ MRS_struct.out.(vox).water.Area(ii)) ...
.* PureWaterConc .* T1_Factor .* T2_Factor .* (N_H_Water ./ N_H_Metab) ...
./ 2 ./ EditingEfficiency;
else
MRS_struct.out.(vox).(metab).ConcIU(ii) = (MRS_struct.out.(vox).(metab).Area(ii) ./ MRS_struct.out.(vox).water.Area(ii)) ...
.* PureWaterConc .* T1_Factor .* T2_Factor .* (N_H_Water ./ N_H_Metab) ...
./ EditingEfficiency;
end